Тема: Радиоизлучение твердых тел cm
Хотя большая часть Вселенной действительно состоит из плазмы, то есть вещество находится в горячем и потому ионизованном состоянии, атрофизика имеет дело с важными группами ``холодных'' объектов, в которых вещество твердое. К таковым, прежде всего, относятся планеты и их спутники.
Радиоастрономические исследования Луны начались на заре радиоастрономии, в начале пятидесятых годов, в то время как детальные исследования планет и их спутников потребовало развития наблюдательной базы (создания крупных антенных систем). В настоящее время методами радиоастрономии исследуются все большие планеты солнечной системы и многие их спутники. Такие наблюдения дают информацию о температуре поверхности исследуемой планеты и позволяют анализировать температуру более глуьоких слоев, то есть оценить градиент температуры.
В исследованиях планет большую роль сыграли методы радиолокации, особенно проводившейся с борта космического аппарата. Эти методы, однако выходят за рамки нашегокурса и мы их обсуждать не будем.
Мы уже говрили о том, что некоторые планеты, обладающие мощными магнитосферами, являются источниками нетеплового излучения, переменного во времени. Возможные механизмы, ответсвенные за этот вид излучения, мы уже обсуждали раньше. В этой лекции мы приводим некоторые сведения из теории и методы, которые используются при интерпретации наблюдений радиоизлучения поверхности Луны, Марса и других планет с твердой поверхностью.
12.1. Уравнение переноса для твердого тела Излучение с поверхности планеты является тепловым. Поэтому оно описывается обычным уравнением переноса длятеплового излучения, которое можно написать, не имея в виду какой-либо конкретный механизм генерации излучения. Тепловой механизм подразумевает только распределение излучающей системы по энергиям согласно закону Больцмана. В твердом теле большинство частиц свзано кристалличесой решеткой, имеются однако в некотром количестве и свободно перемещающиеся электроны. Причина излучения (поглощения) радиоволн, как и в случае тормозного излучения плазмы (см. Лекцию 5) связана со столкновениями зарядов, приведенными в движение Электрическим полем волны.
Итак, уравнения переноса мы запишем в виде:
где
Как и в случае тормозного излучения, коэффициент поглощения
связан с комплексным коэффициентом преломления/диэлектрической проницаемостью:
где
Два уравнения переноса в (12.1) написаны для волн с двумя взаимно
ортогональными линейными поляризациями (см. Рис.1):
с электрическим вектром волны,
лежацим в плоскости её падения (индекс индекс ) и с электрическим
вектором, перпендикулярным этой плоскости (индекс
). Новым
обстоятельством по сравнению с излучением от плазмы является сущетвенная
роль границы твердого тела, отделяющая область распространения волны
внутри планеты и в её атмосфере, если таковая существует ( в противном
случае --- в вакууме). Толщина переходного слоя этой границы
полагается малой (много меньше длины волны). Соответственно,
изменения в волне на такой границе определяются осуществляются скачком
и определяются граничными условиями, из которых мы находим
коэффициенты отражения
и
. Благодаря этоу отражению
выходящая из твердого тела волна ослабляется и кроме того становится
частично линейно поляризованной.
12.2. Граничные условия
Ход лучей на границе твердого тела представлен на Рисунке 1. Излучение идет
снизу, где диэлекктрическая проницаемость среды равна и
пройдя границу (поверхность планеты), попадает в среду с диэдектрической
проницаемостью
. Эта, вторая обычно может рассматриваться
как вакуум. От поверхности (границы раздела двух сред) происходит
частичное отражение волны, а частично она проходит в другую среду,
преломляясь, то есть изменяя направление своего распространения. Доля
отраженной энергии определяется коэффициентом отражения:
а доля прошедшей
Здесь мы индекс 0 относили к полю падающей волны, индекс 1 --- к полю отраженной и индекс 2 --- к полю прошедшей (см, Рис.1).
Рисунок 12.1 Ход лучей на границе твердого тела Выражения для отношения падающей и отраженной, а также падающей и преломленной волн определяются из граничных условий на плверхности раздела двух сред. Это так называемые формулы Френеля (см., например Ландау и Лившиц, Электродинамика сплошных сред, М.Наука, с.407):
Формулы для волны с другой поляризацией:
Указанная совокупность формул позволяет построиь теорию, исользуемую при интерпретации наблюдений теплового иозлучения поверхности Луны и других спутников и планет.
12.3. Радиоастрономическая диагностика твердых тел солнечной системы Ралиоастрономические наблюдения планет и их спутников, прежде всего Луны, позволили исследовать ряд важных свойств их твердых поверхностей и более глубинных слоев. Мы здесь имеем дело с тепловым излучением оптически толстых тел. Поэтому основная информация касается прежде всего температуры поверхности планеты (сравнм с (12.1)):
Независимый метод измерения температуры поверхности сам по себе представляет значительную ценность для физики планет. До радиоасттрономических наблюдений для этой задачи использовались измерения в инфракрасном диапазоне. Ценость радиоастрономического метода определяется еще и тем, что он дает оценку температуры на некоторой глубине под поверхностью планеты. Обычно с ростом длины волны увеличивается и эта глубина. Таким образом спектральные наблюдения планеты в радиодиапазоне позволяют измерять также и градиент темпратуры под поверхностью планеты.
Величина коэффициента R, как мы видели (формулы
(12.5-12.8)), зависят от диэлектрическх свойств материала, из которого
состоит поверхность планеты, а также от угла нормали к поверхности
относительно луча зрения . Поэтому распределение яркости даже
по планете с постоянной температурой должно иметь спад яркости к краям,
величина которого определяется диэлектрической постоянной (и может
служить для ее измерения). Измерение диэлектрической постоянной
не только вносит адекватную коррекцию в измерение температуры поверхности,
но и несет информацию о физическом состоянии и химическом составе
планеты.
Другой способ измерения диэлектрической постоянной и других парметров планеты базируется на анализе поляризации. Как мы видели выше, коэффициент отражения различен для двух линейных ортогональных поляризаций, направление которых совпадает с плоскостью падения излучения и нормального к этой плоскости. Степень поляризации волны, стало быть есть
где мы положили, что и
(у планеты нет плотной атмосферы). Функция
определяется уравнениями (12.7-12.8).
Вдействительности, разумеется, поверхность планеты не может быть изотермична, и распределение радиояркости и поляризации по планете содержит также информацию о распределении температуры по ее поверхности. Последнне, естественно меняется со временем, прежде всего из-за изменений в освещении планеты Солнцем, а также под действием процессов теплопроводности, а возможно и внутренних источников нагрева планеты.
Наибольший объем иследований такого рода был выполнен конечно для
Луны, для которой уже давно стало возможным анализировать распрделение
яркости по поверхности. В ситуация, когда разрешающей способности
для этого не хватает приходится пользоваться некоторыми модельными
представлениями и интегрировать ождаемые распределения по
диску планеты с учетом относительного положения Земли (наблюдателя)
и Солнца.
Рисунок 12.2 Спектр радиоизлучения Луны и распределение температуры с глубиной.
This document was generated using the LaTeX2HTML translator Version 95 (Thu Jan 19 1995) Copyright © 1993, 1994, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
The command line arguments were:
latex2html lesson12.tex.
The translation was initiated by Susanna Tokhchukova on Втр Июл 23 20:58:44 MSD 2002