Исследование слабых галактик в поле гамма-всплеска GRB 021004

И. В. Соколов,¹ Т. А. Фатхуллин,¹ А. С. Москвитин,¹ Браджеш Кумар,² Ю. В. Барышев³

¹Специальная астрофизическая обсерватория, Нижний Архыз, 369167, Россия ²Исследовательский Институт Наблюдательных Наук Ариабатта (ARIES), Наинитал, 263129, Индия

³Институт Астрономии Санкт-Петербургского Государственного Университета

Исследованы данные BVRI-наблюдений полей размером 4/3 х 4/3 с родительской галактикой GRB 021004. Наблюдения были проведены на БТА/SCORPIO в декабре 2002 г. Времена экспозиции 2600 сек. (В), 3600 сек. (V), 2700 сек. (R), и 1800 сек. (I). Построены цветовые диаграммы для всех галактик поля (S/N>3) и звездообразных объектов в нем (таких 23). Проведены дифференциальные и интегральные подсчеты галактик во всех 4 фильтрах до предела, соответствующего S/N>3 (311 объект): 28.5 (B), 28 (V), 27 (R), 26.5 (I). Определены фотометрические красные смещения галактик поля и построено их распределение до z ≈ 4 . Для родительской галактики GRB 021004 z_{phot} =2.215, а z_{sp} =2.329. По результатам дифференциальных и интегральных подсчетов создан каталог галактик обнаруженных в поле, в который включено 183 объекта, что соответствует следующим значениям звездных величин: 26.0 (B), 25.5 (V), 25.0 (R), 24.5 (I).

ВВЕДЕНИЕ 1.

1.1. Глубокие поля БТА

Глубокие поля - это проекты детального изучения относительно небольших участков небесной сферы. Такие проекты осуществляются на больших телескопах и для них характерна большая глубина (z>=0.5), большие времена экспозиции (от нескольких часов до нескольких суток и даже месяцев) и малая площадь (от квадратных угловых секунд до нескольких квадратных градусов). На телескопе БТА САО РАН (6м) за все время его работы было получено множество глубоких полей, некоторые из которых, полученных ки, сделать фотометрию в четырёх фильтрах

по программе оптического отождествления үвсплесков, приведены в таблице 1 [3].

1.2. Постановка задачи

Целью этой работы является выделение и исследование далеких галактик глубокого поля GRB021004, наблюдавшегося в программе оптических отождествлений γ - всплесков. Данные по этому полю удалось получить в достаточно хороших наблюдательных условиях. Для его обработки необходимо было провести первичную редукцию прямых снимков, выделить на изображении слабые галакти(B,V,R,I), оценить угловые размеры галактик и фотометрические красные смещения, построить зависимости между разными наблюдаемыми величинами.

наблюдения и обработка данных

2.1. Наблюдения

Фотометрические наблюдения поля родительской галактики γ -всплеска GRB 021004 были проведены 30 ноября и 1 декабря 2002 года на 6-м телескопе САО РАН. Условия наблюдений были фотометрические с качеством изображения 1.3 угл. секунды, измеренным как полная ширина на половине максимума (FWHM) изображения звездообразных объектов в поле. Площадка центрировалась на координаты родительской галактики $\alpha_{2000.0} =$ $0^h 26^m 54^s.4$, $\delta_{2000.0} = +18^\circ 53' 44''.42$, что соответствует галактическим широте и долготе $b = -43^\circ 35' 37''.1$, $l = 114^\circ 54' 34''.3$.

В наблюдениях использовался прибор SCORPIO (Spectral Camera with Optical Reducer for Photometrical and Interferometrical Observations)[15], устанавленный в главном фокусе 6-м телескопа САО РАН. В качестве приемника излучения использовалась ПЗСматрица ТК1024 формата 1034 × 1034. Размер элемента разрешения составляет 24 микрон, что соответствует угловому масштабу 0.289" на элемент.

2.2. Первичная редукция данных

Начальная редукция данных включала в себя вычитание электронного "нуля", деление на плоское поле, вычитание следов интерференции в фильтрах R_c и I_c , удаление следов космических частиц. Все кадры, полученные в одной цветовой полосе, суммировались. Суммарные кадры были приведены к одной ориентации и к единой системе координат. Размер области пересечения суммарных изображений во всех фильтрах составил 4'.05'' × 4'.16''.

В качестве начальной редукции данных использовалась стандартная методика, применяющаяся к ПЗС-данным. Вся редукция данных проводилась с использованием пакета ESO-MIDAS¹.

 Вычитание электронного "нуля": На начальном этапе обработки данных производится коррекция за так называемый электронный "нуль" (bias). Так как он является аддитивной составляющей результирующего сигнала на ПЗС, электронный "нуль" вычитается из данных. На практике используются несколько медианно усредненных кадров "нуля", что позволяет избавиться от следов космических частиц и уменьшить собствен-

¹ MIDAS (Munich Image Data Analysis System) распространяется и поддерживается Европейской Южной Обсерваторией

ные шумы.

- Вычитание темнового сигнала: Матрицы типа ТК1024 имеют достаточно малый темновой ток, который не вносит заметных поправок в результирующий сигнал. Поэтому, в данной работе поправка за темновой ток не производилась. В общем же случае, для коррекции за этот эффект в течение ночи делается несколько экспозиций при закрытом затворе с длительностью такой же, как и в случае экспозиций для исследуемых объектов. Для понижения шумов производится медианное усреднение полученных кадров и затем результат вычитается из исходных данных.
- Деление на плоское поле: Неоднородность чувствительности элементов ПЗС матрицы корректируются делением на плоское поле. Плоское поле получают путем облучения приемника в каждом из фильтров источником равномерной засветки. Обычно для этого используют яркое вечернее и утреннее сумеречное небо или лампу непрерывного спектра, освещающую крышки главного зеркала. Для удаления следов космических частиц и возможных объектов делается несколько экспозиций со смещением и дальнейшее медианное усреднение полученных кадров.

- Удаление следов космических частиц: Одним из недостатков приборов с зарядовой связью является их чувствительность к космическим частицам. Существуют различные способы выделения космических частиц, например вычитание медианного среднего нескольких кадров из данного. В данной работе был использован алгоритм, реализованный в процедуре FILTER/COSMIC пакета MIDAS.
- "Косметика": Нередко имеющиеся дефектные элементы (как с Пониженной чувствительностью, так и самопроизвольно генерирующие заряд) могут оставлять следы после начальной редукции. Для устранения такого рода дефектов, имеющих фиксированное положение для данной матрицы, применяется интерполяция отсчетов по окрестности.
- Вычитание следов интерференционного "узора": Для так называемых тонких матриц (thinned CCD, таких как TK1024) характерно присутствие в результирующем сигнале интерференционного "узора" (fringes), особенно в красной части спектра (фильтры R и I).
 Это связано с практически монохромным излучением атмосферных эмиссионных линий. Для коррекции этого эффекта применяется метод последова-

тельных смещений. Положение "узора" на ПЗС матрице обычно стабильно в течение наблюдательной ночи, что позволяет отделить его от объектов. В ходе наблюдений данного поля между экспозициями производится смещение телескопа.

Величина смещения зависит от качества изображения в данную ночь, и выбирается таким образом, чтобы положение объектов в каждом последующем кадре не перекрывалось с предыдущим. Типичные величины сдвига при фотометрических наблюдениях составляют 30 элементов матрицы или ~ 9 угл. секунд. Далее из редуцированных (вычтен электронный "нуль", поделено на плоское поле и удалены частицы) кадров вычитался фон и полученные кадры усреднялись с помощью медианы. Так как интерференционный "узор" является аддитивной составляющей, полученный кадр вычитался из редуцированных данных.

• Астрометрия: Применение метода последовательных смещений требует на последнем этапе редукции сведения всех кадров в каждом из фильтров в единую систему координат. Эта задача выполнялась с помощью процедур ALIGN/IMAGE и REBIN/ROTATE пакета ESO-MIDAS. Первая процедура основана на вычислении геометрического преобразования (сдвиг, поворот, масштабирование) данного кадра к опорному с помощью набора реперных объектов. Обычно использовалось 7—15 опорных объектов. Для более точной астрометрии использовались звездообразные объекты, что позволяло достигать точности 0.2 — 0.5 элемента матрицы при вычислении сдвига. Далее приведенные кадры складывались.

2.3. Астрометрическая привязка

Для определения экваториальных координат выделяемых объектов, редуцированные кадры привязывались к системе мировых координат на эпоху 2000. Данная процедура производилась при помощи пакетов westools, ds9 и каталога USNO, содержащего координаты звезд. Каталог был получен после заполния формы на www-странице USNO Flagstaff station [16], где задавались координаты центра площадки, её размер и другие параметры. Для облегчения процедуры отождествления с сайта запрашивались изображения площадки, координаты объектов которой необходимо получить. Размер площадки брался равным 7т х 7m угловых минут, чтобы она наверняка включила в себя исследуемую область. В качестве опорного каталога выбирался каталог USNO-B1.0, содержащий более 1,000,000,000 объектов и являющийся последним каталогом проекта USNOFS PMM.

Опорные звезды, по которым производилась привязка к мировой системе координат, должны были удовлетворять следующим критериям:

- Объекты должны быть звездообразными, а их центры должны быть определены максимально точно для более качественной привязки;
- Объекты не дожны быть перекоплены;
- Объекты не должны быть слишком слабыми, где в определяемые величины может дать вклад фоновый шум;
- Объекты по возможности не должны иметь собственных движений, или должны выбираться объекты с минимальными собственными движениями, чтобы минимизировать ошибку, связаную с тем, что привязываемые кадры и опорные каталоги были получены в разное время, за которые звёзды могут заметно сместиться;
- Ошибка определения координат опорных звезд должна быть минимальной;
- Опорные объекты не должны накладываться друг на друга.

Таким образом, было выбрано 6 звезд, по которым осуществлялась привязка при помощи пакета wcstools. Ошибка астрометрии составила 0.2 угловых секунд.

2.4. Совмещение кадров и построение общего поля

Далее, редуцированные и привязанные к мировой системе координат кадры при помощи процедур ALIGN/IMAGE и REBIN/ROTATE пакета ESO MIDAS совмещались между собой и, таким образом, определялась область, общая для всех кадров, в которой производился поиск объектов (см. рис 2).

2.5. Выделение объектов

Для поиска и массовой фотометрии объектов в поле был использован программный пакет SExtractor [6]. Пакет позволяет измерять несколько видов звездных величин, поэтому приведем здесь краткое резюме алгоритма измерений:

- Изофотальная величина определена как интеграл потока по области с интенсивностью выше заданного предела.
- Исправленная изофотальная величина определена следующим способом: профиль объекта аппроксимируется двумерной гауссианой и, исходя из найденных параметров, вводится соответствующая поправка к изофотальной величине.
- Автоматическая величина была впервые определена в работе [10]. Вычисля-

ется первый момент $r_1 = \sum_{I(r)} r_{I(r)}$. В работе [10] было показано, что для объектов со звездообразными, степенными и экспоненциальными профилями, свернутыми с гауссианой, примерно 92% потока заключено в апертуре радиуса kr_1 , где $k \approx 2$. В пакете SExtractor определяется эллиптическая апертура с главными осями ϵkr_1 и kr_1/ϵ , где ϵ - эллиптичность.

 Апертурная величина определена как величина, измеренная в круговой апертуре, заданной пользователем.

Полная величина определяется равной автоматической, если в соответствующую апертуру данного объекта не попадает сосед с блеском, который изменяет зв. величину данного объекта более, чем на 0.1 зв. величины. В противном случае выбирается исправленная изофотальная величина.

В качестве предела обнаружения объекта было выбрано 2σ превышение интенсивности над фоном, где σ - флуктуация фона. Это соответствует изофотам 27.56, 26.64, 26.62 и 25.22 зв. величины на квадратную угл. секунду в B, V, R_c и I_c фильтрах (~ 1% от яркости ночного неба).

Аппроксимация фона — очень важная процедура при автоматическом поиске объектов. Поэтому построение фона контролировалось "на глаз". Аппроксимированный фон проверялся на отсутствие структур около ярких объектов и резких флуктуаций на малых масштабах (меньше, чем 5 – 7 FWHM²). Найденый кандидат считался реальным объектом, если он состоял не менее, чем из четырёх соединенных между собой элементов матрицы.

Всего было обнаружено 637, 771, 1169 и 615 объектов в B, V, R_c и I_c фильтрах соответственно. Следует отметить, что каталог может содержать ошибочное обнаружение из-за эффектов флуктуации фона. Для всех объектов каталога были измерены изофотальная, апертурная и полная величины. Массовая фотометрия объектов в поле позволяет нам определить предельную зв. величину. Пределом обнаружения считалась средняя зв. величина объектов с отношением "сигнал-шум" S/N=2. Тогда предельными зв. величинами будут 28.0, 27.5, 27.0 и 26.0 в B, V, R_c и I_c фильтрах соответственно.

2.6. Фотометрия

Все наблюдения велись с использованием фильтров, которые в комбинации с квантовой чувствительностью ПЗС матрицы реализовывали фотометрическую систему, близкую к стандартной Джонсон-Крон-Коузинс [4].

Инструментальные величины объекта измерялись следующим образом:

$$m_{aper} = -2.5 \cdot \log(\frac{F}{T_{exp}}) - \frac{k}{\cos(Z)}, \quad (1)$$

² FWHM - полная ширина на половине максимума звездообразного профиля

данной апертуре, T_{exp} - время экспозиции ных величин к стандартным использовались (в секундах), k - коэффициент атмосферной экстинкции и Z - зенитное расстояние (в градусах). Коэффициенты атмосферной экстинкции были взяты из работы Неизвестного (1983) [1] и составили соответственно $k_B =$ $0.34, \ k_V = 0.21, \ k_{R_c} = 0.15$ и $k_{I_c} = 0.1$ звездной величины. В случае звездообразных объектов для вычисления инструментальной величины использовалась так называемая поправка за конечную апертуру. Тогда выражение для полной величины записывается как

$$m = m_{aper} - \delta m$$

где *m_{aper}* - зв. величина, определяемая выражением (1) и δm - поправка за конечную апертуру, определяемая из измерений кривых роста для ярких звездообразных объектов в поле.

Для определения ошибок измерения зв. величин вычислялось отношение "сигнал/шум":

$$\frac{S}{N} = \frac{F}{\sqrt{F/g + A \cdot \sigma^2}}$$

где F - поток от объекта (в отсчетах) в заданной апертуре, q - квант преобразования (в электронах/отсчет), А - количество элементов в апертуре и σ^2 - дисперсия фона (в отсчетах). Затем вычисляется ошибка:

$$\sigma_m = \frac{2.5}{\ln 10} \cdot \frac{\sigma_F}{F} = \frac{2.5}{\ln 10} \cdot \frac{1}{S/N}$$

Фотометрическая калибровка производилась с помощью стандартных звезд из каталогов Ландольта (Landolt, 1992) [11] и

где F - поток от объекта (в отсчетах) в за- Стетсона[14]. Для перехода от инструментальследующие соотношения:

$$B - b = C_0^B + C_1^B \cdot (b - v)$$

$$V - v = C_0^V + C_1^V \cdot (b - v) \qquad (2)$$

$$R_c - r = C_0^{R_c} + C_1^{R_c} \cdot (v - r)$$

$$I_c - i = C_0^{I_c} + C_1^{I_c} \cdot (r - i),$$

где $C_0^{B,V,R_c,I_c}, C_1^{B,V,R_c,I_c}$ - нуль-пункты и цветовые коэффициенты, b, v, r, i - инструментальные величины и B, V, R_c, I_c - величины в стандартной фотометрической системе. Нульпункты и цветовые коэффициенты определяются из наблюдений и фотометрии стандартных звезд, а затем линейной аппроксимацией системы уравнений (2). Типичные ошибки составили соответственно 0.01 – 0.02 зв. величины для нуль-пунктов (C_0) и 0.01 - 0.05 для цветовых коэффициентов (C_1) .

3. ОПЕНКА ФОТОМЕТРИЧЕСКИХ КРАСНЫХ СМЕЩЕНИЙ

3.1.Методика

Для галактик поля был применен метод оценки фотометрических красных смещений, реализованный в программном пакете HyperZ [8]. В данной работе поставлена цель оценить красные смещения для всех протяженных объектов, обнаруженных в поле родительской галактики GRB 021004.

Определение спектроскопических красных смещений для сотен слабых объектов в глубоких полях достаточно сложная и трудоемкая задача, требующая больших затрат наблюдательного времени. Но для многих задач вполне приемлемыми оказываются оценки фотометрических красных смещений, которые делаются по результатам многоцветной фотометрии. Точность таких оценок около 10%, но этого часто вполне достаточно для статистических исследований свойств далеких объектов. Многоцветная фотометрия может рассматриваться как спектр очень низкого разрешения, который можно использовать для оценок z. Иногда такие оценки носят предварительный характер, особенно для слабых объектов, перед проведением более сложных наблюдений на спектрографе.

3.2. Настройка пакета HyperZ

В качестве входных данных в пакете НурегZ используются BVR_cI_c величины и их ошибки для протяженных объектов в поле, поглощение в нашей Галактике, спектральное распределение энергии галактик различных типов, параметры космологической модели, различные законы экстинкции в галактиках. Поглощение в нашей Галактике было взято равным E(B - V) = 0.025 согласно картам пыли из работы [12]. В качестве модельных спектральных распределений энергии были приняты библиотеки модельных спектров (шаблоны, шаблонные спектры), предоставляемые пакетом HyperZ. Модели отличаются типом истории звездообразования. Это либо постоянный темп, либо экспоненциальное падение или начальная вспышка звездообразования в виде дельта-функции.

Для законов экстинкции были выбраны варианты, представленные в пакете HyperZ. Это такой же закон, как и для нашей Галактики, законы для Большого и Малого Магелановых Облаков и закон экстинкции для галактик со звездообразованием. Эти законы отличаются наклоном кривых в дальнем ультрафиолете и, главное, наличием или отсутствием полосы поглощения графита на 2200Å.

Диапазон поглощения задавался одинаковым и составлял $A_V = 0.0 - 3.0$ зв. величин с шагом 0.3. Красное смещение было зафиксировано в диапазоне z = 0.0 - 5.0 с шагом 0.1. Использована космологическая модель с $H_0 = 70 \,\mathrm{km} \,\mathrm{c}^{-1} \,\mathrm{Mn} \mathrm{k}^{-1}, \,\Omega_M = 0.3$ и $\Omega_\Lambda = 0.7$.

Выбор закона поглощения существенно влияет на результаты, то есть важно учитывать особенности законов экстинкции для оценки фотометрических красных смещений. Далее были отобраны объекты, для которых вероятность иметь вычисленное красное смещение больше или равна 0.9. Окончательный каталог содержит 183 объекта в диапазоне красных смещений от 0.05 до 3.8.

В результате работы пакета HyperZ для каждого из объектов помимо оценки красного смещения могут быть найдены и другие параметры. Например, спектральный тип галактики — он основан на подобии распределения энергии в спектре объекта одному из теоретических шаблонных спектров.

На Рис. 8 приведена гистограмма распределения объектов по z. На Рис. 7 приведены диаграммы "Фотометрическое красное смещение - звездная величина". В этой работе использован закон поглощения Seaton (MW). Он дал хорошее согласие фотометрической оценки красного смещения родительской галактики со спектроскопическим z (см. ниже), хотя более корректный анализ предполагает отдельное исследование каждого закона поглощения и сравнения с выборками галактик с измеренными красными смещениями.

В завершении в работе построена диаграмма Хаббла для родительских галактик с известными красными смещениями. Для сравнения её с такой же диаграммой для галактик поля снова использовались результаты массовой фотометрии галактик в БТА-поле гамма-всплеска GRB 021004. Для галактик поля был применён метод оценки фотометрических красных смещений, реализованный в программном пакете HyperZ [7].

3.3. Наблюдаемые параметры родительской галактики GRB 021004

BVR_cI_c фотометрические наблюдения родительской галактики GRB 021004 были проведены на БТА [3],[13] по программе оптического отождествления гамма-всплесков в САО РАН. В этом разделе приведены значения величин родительской галактики гаммавсплеска GRB021004, определенные методами, описаными выше.

На Рис. 2 (прямой снимок в В) для фильтра В среди 311 профотометрированных таким образом объектов показано положение родительской галактики. Соответствующие значения наблюдаемых звездных величин в каждом фильтре: B=24.434(+/-0.132), V=24.006(+/-0.099), R=24.174(+/-0.154), I=23.437(+/-0.170). Они полностью соответствуют оценкам, сделанным в [3], [13].

Фотометрическое красное смещение оказалось близким спектроскопическому: $z_{phot} =$ 2.215 ([9], $z_{sp} = 2.329$) Определение красного смещения с помощью HyperZ-шаблонов соответствует подгонке теоретического, шаблонного спектра галактики сп. типа E, с наблюдаемым широкополосным BVRI спектром при хі square = 0.003 (Probability: 99.980). Эта подгонка соответствует закону внутреннего поглощения Seaton (MW) с углеродной особенностью на ~ 2200A. (Гладкие законы поглощения дают большее значение хі square и меньшую вероятность.)

Из наблюдаемых величин видно, что родительская галактика по всем своим Параметрам такая же, как и все обычные галактики со звездообразованием.

Таблица 1. Глубокие поля БТА

γ -всплеск	Дата	Фильтры PS	F FWHM	Т _{ехр} ,сек
GRB970508	Авг 1998	BVRI	1''.3	600x7, 500x4, 600x5, 400x5
GRB971214	Июль 1998	VR	1''.2	600x1, 600x1
GRB980613	Июль 1998	BVR	1''.3	700x1,600x1,600x3
GRB980703	Июль 1998	BVRI	1''.3	$480 \mathrm{x}1, 320 \mathrm{x}1, 300 \mathrm{x}1, 360 \mathrm{x}1$
GRB990123	Июль 1998	BVRI	1''.5	600x1, 600x1, 600x1, 600x1
GRB991208	Март 2000	BVRI	2''.1	300x6, 300x5, 180x7, 180x2
GRB000926	Июль 2001	BVRI	1''.3	500x5, 300x5, 180x25, 120x15
GRB021004	Дек 2002	BVRI	1''.5	600x6, 450x13, 180x15, 120x14

Рис. 1. Прямые изображения родительской галактики в четырех фильтрах и подобранный шаблонный спектр

4. РЕЗУЛЬТАТЫ

4.1. Каталог обнаруженных объектов

Окончательный каталог содержит объекты: 183 галактики и 22 звезды (рис 2 и таблицы 2-5). Для галактик определены красные смещения, координаты на кадре, мировые координаты, звёздные величины и их ошибки в четырёх фильтрах, эллиптичности, элонгации, классы звездообразности, большие и малые полуоси вписанных эллипсов и соответствующие позиционные углы. В таблицах 2-5 приведены некоторые из перечисленных параметров.

4.2. Наблюдаемые соотношения для слабых галактик

Были построены цветовые диаграммы (B-V от V-R, V-R от R-I), зависимости показателей цвета от звездных величин, дифференциальные и интегральные подсчеты галактик (см. рисунки 3-6).

5. ЗАКЛЮЧЕНИЕ

Проведено исследование глубокого поля размером 4.05 х 4.16 угл. минуты родительской галактики гамма-всплеска GRB 021004 по данным BVRI наблюдений на телескопе БТА с прибором SCORPIO, которые были получены в ходе выполнения программы отождествления гамма-всплесков. В каталог галактик, обнаруженных в поле, включено 183 объекта с соотношением сигнал/шум больше 3 в каждом фильтре, что соответствует следующим значениям звездных величин: 26.0 (В), 25.5 (V), 25.0 (R), 24.5 (I).

Проведены дифференциальные и интегральные подсчеты обнаруженных объектов во всех 4 фильтрах до предела, соответствующего S/N > 3 (311 объетов): 28.5 (B), 28 (V), 27 (R), 26.5 (I). Время экспозиции 2600 сек. (B), 3600 сек. (V), 2700 сек. (R), и 1800 сек. (I).

Построены цветовые диаграммы для всех галактик поля (S/N>3) и звездообразных объектов в нем (таких 23).

Определены фотометрические красные смещения галактик поля до $z \approx 4$, использовался закон экстинкции - Seaton(MW).

Определены более точные значения величины родительской галактики гаммавсплеска GRB021004: B=24.434(+/-0.132), V=24.006(+/-0.099), R=24.174(+/-0.154), I=23.437(+/-0.170). Фотометрическое красное смещение оказалось близким спектроскопическому: $z_{phot} = 2.215$ ($z_{sp} = 2.329$); χ^2 : 0.003, Probability: 99.980, Туре: E, закон внутреннего поглощения Seaton (MW) с углеродной особенностью на ~ 2200А.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Васильеву Андрею Александровичу за полезные об-

Рис. 2. Обнаруженные в четырех фильтрах объекты. Крестиком выделена родительская галактика

Рис. 3. Цветовые диаграммы для обнаруженных объектов

Рис. 4. Зависимости цвет-величина для обнаруженных объектов

суждения и советы, Комаровой Виктории Ни- РФ. колаевне за поддержку и методическую помощь в обработке данных и наблюдениях. Эта работа была поддержана грантом РНП 2.1.1.3483 Федерального агенства образования

ПРИЛОЖЕНИЕ

- 1. Неизестный, С.И. Атмосферная экстинкция в САО и CCCP - 1976-1980 Известия САО, 17, 26, (1983)
- 2. Т. А. Фатхуллин, А. А. Васильев, В. П. Решетников. ФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВА-НИЕ СЛАБЫХ ГАЛАКТИК В ПОЛЕ ГАММАвсплеска GRB 000926

Письма в Астрофизический Журнал, 30, 323, 2004

3. Фатхуллин Т. А.

 Φ отометрическое и спектральное ис-СЛЕДОВАНИЯ РОДИТЕЛЬСКИХ ГАЛАКТИК КОСМИ ЧЕСКИХ ГАММА-ВСПЛЕСКОВ (Диссертация на соискание научной степени кандидата физ.-мат.наук)

Рис. 5. Дифференциальные подсчеты галактик в четырех фильтрах

УДК 524.7-732:520.8

4. Bessell, M.S. UBVRI passbands

PASP, **102**, 1181, (1990)

- 5. E. Bertin and S. Arnouts, Astronomy and Astrophysics, **117**, 393, 1996
- 6. Bertin E. and Arnouts S. SEXTRACTOR: SOFTWARE FOR SOURCE EXTRACTION

Astron. Astrophys. Suppl. Ser., 117. 393 (1996)

- 7. Bolzonella et. al. 2000
- 8. Bolzonella, M.; Miralles, J.-M.; Pelló, R. Photometric redshifts based on standard

SED FITTING PROCEDURES

Astronomy and Astrophysics, v.363, p.476-492 (2000)

 Fynbo, J.P.U.; Gorosabel, J.; Smette, A.; Fruchter, A.; Hjorth, J.; Pedersen, K.; Levan, A.; Burud, I.; Sahu, K.; Vreeswijk, P.M.; Bergeron, E.; Kouveliotou, C.; Tanvir, N.; Thorsett, S.E.; Wijers, R.A.M.J.; Castro Cerón, J.M.; Castro-Tirado, A.; Garnavich, P.; Holland, S.T.; Jakobsson, P.; Møller, P.; Nugent, P.; Pian, E.; Rhoads, J.; Thomsen, B.; Watson, D. & Woosley, S.

On the Afterglow and Host Galaxy of

Рис. 6. Интегральные подсчеты галактик в четырех фильтрах

	GRB 021004: A Comprehensive Study wi		Marc
	TH THE HUBBLE SPACE TELESCOPE		MAPS OF DUST INFRARED EMISSION FOR
	Astrophys. J., 633, 317, (2005)		USE IN ESTIMATION OF REDDENING AND
10.	Kron R. G.		Cosmic Microwave Background Radiation
	PHOTOMETRY OF A COMPLETE SAMPLE OF		Foregrounds
	FAINT GALAXIES		Astrophysical Journal v.500, p.525 (1998)
	Astrophys. J. Suppl. Ser., 43, 305 (1980)	13.	Sokolov, V.V; Fatkhullin, T.A.; Komarova, V.N.;
11.	Landolt, A.U.		Moiseev, A.V.
	UBVRI PHOTOMETRIC STANDARD STARS IN		GRB021004, late time optical
	THE MAGNITUDE RANGE $11.5-16.0$ around		OBSERVATIONS
	THE CELESTIAL EQUATOR		$\rm GCN\ \#1717\ http://gcn.gsfc.nasa.gov/gcn3/1717.gcn3$
	Astron. J, 104, 340-371, 436-491, (1992)	14.	http://cadcwww.dao.nrc.ca/cadcbin/wdb/astrocat/stetson/doints/astrocat/stetson/stetson/doints/astroc
12.	Schlegel, David J.; Finkbeiner, Douglas P.; Davis,	15.	SCORPIO: Spectral Camera with

Рис. 7. Диаграммы "красное смещение - звездная величина" для обнаруженных объектов

	Optical	Reducer	for	Photometrical					
	and	Interferome	rical	Observations					
	$http://www.sao.ru/~moisav/scorpio/scorpio.html \label{eq:http://www.sao.ru}$								
16.	USNO	$\operatorname{Flagstaff}$	station:	Integrated					

Рис. 8. Гистограмма z

#	RA	Dec	R mag	Error	А	В	Θ	Ellipticity	Z	%	Type
4	6.7513942	18.9673156	22.982	0.065	2.077	2.017	-19.27	0.029	2.455	99.990	Burst
6	6.7569324	18.9637779	22.449	0.057	2.429	2.077	-46.64	0.145	0.420	95.520	Burst
7	6.7690351	18.9535352	23.902	0.130	2.171	1.303	49.06	0.400	0.410	99.930	$\mathbf{S}\mathbf{b}$
8	6.7287482	18.8897327	19.602	0.048	4.553	3.624	29.35	0.204	0.350	99.440	Е
10	6.7357566	18.8931875	20.191	0.048	3.702	3.484	3.76	0.059	0.450	98.920	Burst
12	6.7061027	18.9187270	23.850	0.096	1.724	1.562	-37.67	0.094	1.750	99.800	Burst
15	6.7336192	18.8915674	23.954	0.101	1.628	1.547	7.16	0.050	0.655	100.000	Im
16	6.7311820	18.8979110	24.012	0.102	1.879	1.260	52.26	0.330	0.530	99.970	Burst
17	6.7425961	18.8885127	22.930	0.082	2.668	1.861	-88.43	0.303	0.725	98.500	Burst
18	6.7024788	18.9172453	22.077	0.054	2.635	2.464	31.56	0.065	0.615	99.970	Е
20	6.7282291	18.9010007	23.277	0.079	2.503	1.779	52.79	0.289	0.725	99.830	Е
21	6.7055368	18.9151454	23.114	0.076	2.483	2.093	-17.57	0.157	1.460	98.870	Burst
27	6.7366199	18.8992503	23.439	0.078	2.118	1.452	-87.19	0.315	2.775	99.820	Sd
29	6.7371365	18.9001780	21.933	0.053	2.723	2.447	48.22	0.101	0.435	96.280	Burst
30	6.7418456	18.8969388	23.494	0.112	2.220	1.719	20.11	0.226	0.405	99.780	Burst
31	6.7261123	18.9062088	21.960	0.055	2.498	2.307	-26.04	0.076	0.355	98.190	Burst
32	6.7251349	18.9071259	23.233	0.093	2.508	1.875	-30.05	0.253	1.720	99.920	Burst
33	6.7292699	18.9064962	24.263	0.114	1.472	1.303	59.90	0.115	2.195	94.430	Burst
34	6.7312920	18.9070180	23.100	0.070	2.320	1.569	-42.97	0.324	0.430	99.940	Burst
35	6.7323410	18.9071068	21.086	0.050	5.466	2.463	-12.78	0.549	0.715	90.680	Burst
37	6.7334381	18.9053957	24.043	0.105	1.739	1.406	-2.71	0.192	2.095	87.200	Burst
38	6.7301424	18.9086318	22.980	0.074	2.695	2.272	80.49	0.157	3.300	99.990	Burst
39	6.7055591	18.9306061	20.337	0.049	4.999	3.596	35.40	0.281	0.520	94.570	Е
40	6.7452603	18.8970867	23.673	0.125	2.008	1.888	-33.24	0.060	2.045	98.080	Burst
41	6.7094162	18.9287798	20.816	0.049	4.922	2.445	39.95	0.503	0.595	94.970	Burst
42	6.7458050	18.8962622	23.077	0.100	2.590	1.733	-22.66	0.331	1.200	99.940	S0
43	6.7058092	18.9282392	22.277	0.057	2.994	2.168	-45.99	0.276	0.555	99.880	Burst
44	6.7394420	18.9029221	22.607	0.066	2.427	1.662	-75.29	0.315	1.095	99.980	Е
48	6.7148027	18.9039917	20.999	0.049	3.372	2.312	38.00	0.314	0.455	99.500	Burst
51	6.7213398	18.8987454	22.053	0.052	2.541	2.317	-37.56	0.088	0.710	99.920	Im
54	6.7357035	18.9095458	23.751	0.105	2.608	1.177	-38.20	0.549	1.880	93.270	Burst
58	6.7099749	18.9329219	20.688	0.049	3.152	2.578	44.84	0.182	0.550	98.720	Burst
59	6.7335179	18.9118569	24.070	0.100	1.466	1.173	-48.54	0.200	0.945	99.930	Burst
60	6.7376701	18.9097209	21.040	0.049	3.455	2.344	-63.99	0.321	0.395	99.620	Sa
61	6.7454978	18.9028604	23.038	0.076	3.301	1.889	-49.71	0.428	2.255	97.310	Burst
62	6.7217604	18.8994724	21.408	0.050	3.790	2.736	-65.25	0.278	1.150	99.930	S0
63	6.7067053	18.9362001	24.231	0.127	1.585	1.556	6.20	0.018	1.785	99.090	Burst
64	6.7505419	18.8989599	21.840	0.053	3.196	2.428	45.59	0.240	0.235	93.710	Е
69	6.7391198	18.9092049	21.157	0.050	3.426	2.850	-48.73	0.168	0.410	99.380	Sa
75	6.7230615	18.9243530	21.227	0.049	2.826	2.562	-34.01	0.093	0.410	99.950	\mathbf{E}
78	6.7133037	18.9337768	22.055	0.055	4.627	2.348	-63.39	0.492	0.435	96.490	Burst
79	6.7138983	18.9336618	22.048	0.052	2.492	1.988	-46.21	0.202	1.050	99.630	Burst
81	6.7283115	18.9207835	21.437	0.050	2.714	2.082	-51.35	0.233	0.550	99.070	Е
82	6.7119154	18.9348154	24.368	0.121	1.741	1.073	-50.70	0.384	0.970	99.960	S0
84	6.7268226	18.9237995	22.847	0.065	2.431	1.776	-53.73	0.269	1.155	99.900	Burst
86	6.7280011	18.9240078	22.251	0.056	2.658	2.140	-23.10	0.195	0.660	99.550	Sc
88	6.7042242	18.9426016	23.813	0.117	2.020	1.433	-82.58	0.291	3.495	96.700	Burst
90	6.7172032	18.9338649	23.955	0.102	1.801	1.482	-23.89	0.177	0.215	99.230	Burst

#	RA	Dec	R mag	Error	А	В	Θ	Ellipticity	Ζ	%	Туре
92	6.7330470	18.9209324	23.714	0.115	2.223	1.170	1.64	0.474	1.925	98.830	Burst
94	6.7267878	18.9268011	22.746	0.073	2.874	1.953	-77.94	0.321	1.255	99.590	Burst
95	6.7278274	18.9263300	23.795	0.143	1.660	1.236	-55.46	0.256	1.585	99.950	Burst
96	6.7063872	18.9446722	23.354	0.095	1.844	1.740	-18.47	0.056	0.500	99.910	Е
98	6.7126000	18.9400384	23.148	0.105	2.301	1.877	-45.06	0.184	0.605	99.800	Im
100	6.7378932	18.9184430	21.249	0.050	3.041	2.554	30.97	0.160	0.105	99.950	Burst
101	6.7149644	18.9377266	24.755	0.159	2.062	0.819	-55.35	0.603	1.930	99.360	Burst
102	6.7436320	18.9133905	22.967	0.095	2.417	1.977	57.70	0.182	0.500	99.980	$\mathbf{S0}$
104	6.7415506	18.9154723	23.001	0.075	2.151	1.976	19.49	0.081	1.030	100.000	Burst
106	6.7214662	18.9349512	20.290	0.048	3.587	3.363	-32.56	0.063	2.230	99.250	Burst
107	6.7218867	18.9359942	21.334	0.050	2.852	2.724	-9.52	0.045	0.450	99.980	Im
110	6.7254046	18.9323878	24.553	0.129	1.306	1.185	-3.71	0.092	1.090	99.960	Е
112	6.7314115	18.9274752	23.356	0.100	2.335	1.788	21.24	0.234	0.595	100.000	\mathbf{Sc}
113	6.7489911	18.9123715	22.853	0.070	2.715	2.155	-52.13	0.206	0.645	100.000	Е
114	6.7372852	18.9230343	22.224	0.058	3.263	2.453	70.60	0.248	0.390	99.560	Burst
116	6.7540226	18.9091978	21.288	0.050	3.308	2.441	78.50	0.262	0.350	90.210	Е
117	6.7274964	18.9319061	24.463	0.142	1.761	1.341	54.14	0.238	0.575	99.000	Burst
118	6.7125589	18.9449319	25.115	0.188	1.336	0.746	16.83	0.442	0.510	100.000	Burst
120	6.7112376	18.9476321	22.030	0.059	3.300	2.313	50.36	0.299	0.455	99.740	$\mathbf{S0}$
121	6.7372927	18.9254377	21.767	0.051	2.658	2.189	-24.78	0.177	0.410	95.920	Sa
122	6.7230357	18.9381070	24.137	0.166	1.721	0.962	86.30	0.441	2.805	99.990	Burst
124	6.7330954	18.9300425	24.123	0.151	1.536	1.053	-76.79	0.314	0.350	86.370	Burst
126	6.7587893	18.9097985	20.601	0.049	3.836	3.334	33.44	0.131	0.400	86.390	Burst
130	6.7222917	18.9416459	20.471	0.049	3.866	3.689	-21.19	0.046	0.295	99.980	Е
132	6.7343068	18.9323693	21.758	0.052	3.137	1.919	59.43	0.388	1.085	98.950	Е
133	6.7377290	18.9281921	24.153	0.100	1.332	1.287	-10.30	0.034	0.640	99.650	Burst
135	6.7333383	18.9337670	23.109	0.069	2.416	1.519	24.85	0.371	0.350	99.910	$\mathbf{S0}$
136	6.7312538	18.9360021	22.456	0.057	2.979	1.954	-21.09	0.344	0.440	98.440	Е
137	6.7306339	18.9373340	20.209	0.048	3.677	3.230	36.52	0.122	0.445	98.650	Е
138	6.7382999	18.9309822	20.045	0.048	3.210	2.526	51.20	0.213	0.380	91.080	Burst
140	6.7370856	18.9325982	21.369	0.051	3.834	2.793	-35.86	0.272	2.970	99.920	Burst
142	6.7485327	18.9227745	20.594	0.049	4.587	3.421	22.91	0.254	0.635	97.280	Burst
143	6.7443569	18.9262072	22.590	0.061	2.449	2.312	-10.35	0.056	0.645	99.850	$\mathbf{S0}$
149	6.7418611	18.9277195	22.640	0.064	2.975	2.208	-66.72	0.258	0.500	96.220	Burst
150	6.7330770	18.9373888	22.674	0.062	2.493	1.749	37.32	0.298	0.350	96.560	Burst
151	6.7543455	18.9176410	21.419	0.051	3.386	2.719	-46.55	0.197	0.400	87.660	Burst
154	6.7231809	18.9465777	23.279	0.082	2.316	1.664	-50.62	0.282	0.650	99.490	Е
155	6.7205488	18.9486985	21.158	0.049	2.837	2.675	-32.09	0.057	0.405	99.650	Burst
160	6.7525150	18.9248278	23.262	0.088	2.001	1.508	44.36	0.247	0.410	92.240	Burst
162	6.7262278	18.9480101	23.390	0.096	2.556	1.541	-18.54	0.397	0.510	99.980	Burst
163	6.7504344	18.9274951	23.031	0.078	2.284	1.739	-34.22	0.239	0.585	100.000	Burst
164	6.7594479	18.9177523	22.361	0.056	2.469	1.848	-0.08	0.251	0.790	99.990	Burst
165	6.7202390	18.9557674	21.090	0.050	3.802	2.299	-47.04	0.395	1.040	99.790	Е
166	6.7683269	18.9134646	22.453	0.060	3.135	2.103	51.00	0.329	0.560	97.040	Е
167	6.7460564	18.9339038	21.861	0.055	4.577	2.252	-37.72	0.508	2.415	89.890	Burst
168	6.7624998	18.9205217	20.229	0.048	5.429	2.674	-3.17	0.508	0.240	99.590	Е
169	6.7274636	18.9512759	23.291	0.098	1.982	1.717	14.27	0.134	0.460	99.850	Burst
170	6.7632633	18.9146873	22.265	0.061	4.744	2.267	18.97	0.522	0.785	99.990	Burst

#	RA	Dec	R mag	Error	А	В	Θ	Ellipticity	Ζ	%	Туре
171	6.7525083	18.9236118	23.797	0.103	1.719	1.446	27.85	0.159	0.980	99.830	Burst
172	6.7225254	18.9563701	21.539	0.053	4.891	2.665	77.86	0.455	0.800	98.490	Е
175	6.7430550	18.9391190	20.728	0.049	3.182	3.089	-19.42	0.029	0.350	98.320	Е
176	6.7717478	18.9140033	22.542	0.058	2.699	2.033	-79.96	0.247	0.300	99.960	S0
177	6.7710887	18.9160211	20.045	0.048	5.174	3.112	81.96	0.399	0.145	88.850	Burst
178	6.7589031	18.9264474	23.565	0.097	2.783	1.709	-23.73	0.386	1.295	99.750	Е
179	6.7446613	18.9398396	24.373	0.129	1.752	1.250	-21.71	0.286	2.265	95.530	\mathbf{Sb}
180	6.7264041	18.9561536	23.627	0.086	1.850	1.632	57.80	0.118	0.450	99.490	Burst
182	6.7259926	18.9576953	21.324	0.051	3.735	2.886	-53.47	0.227	0.415	99.180	\mathbf{Sb}
183	6.7665266	18.9225650	23.425	0.078	1.863	1.733	6.12	0.070	3.035	99.180	Burst
184	6.7504314	18.9367025	23.250	0.073	2.036	1.678	34.36	0.176	0.710	99.830	Е
186	6.7729341	18.9177654	22.312	0.057	2.811	2.307	-12.73	0.179	0.840	99.850	Burst
187	6.7428610	18.9433375	22.145	0.054	3.146	2.197	-26.56	0.302	0.575	97.760	Е
188	6.7481237	18.9395324	19.631	0.048	4.419	3.544	-59.63	0.198	0.100	89.820	Burst
189	6.7622995	18.9272361	24.744	0.161	1.605	1.169	38.40	0.272	2.330	99.980	$\mathbf{S0}$
190	6.7647690	18.9268173	18.623	0.048	4.689	4.309	-6.05	0.081	2.005	99.990	Burst
191	6.7541836	18.9350243	24.942	0.155	1.227	0.938	-34.79	0.235	2.760	94.010	Sd
192	6.7564952	18.9337142	23.958	0.144	1.414	1.348	-24.95	0.046	1.440	99.910	Burst
193	6.7381025	18.9496895	24.586	0.133	1.333	1.177	-58.65	0.117	2.085	99.950	Е
194	6.7752579	18.9180312	22.204	0.055	2.536	1.979	-19.45	0.220	0.350	99.750	Е
198	6.7564601	18.9360949	23.941	0.151	1.607	1.113	-67.05	0.307	1.035	99.760	Е
199	6.7520206	18.9401844	23.593	0.089	2.627	1.381	10.56	0.474	1.190	99.680	Sa
200	6.7321157	18.9584521	21.132	0.050	3.576	2.819	-27.46	0.212	2.455	99.990	Е
202	6.7605864	18.9314421	23.600	0.094	2.861	1.424	65.14	0.502	2.450	100.000	Burst
205	6.7331715	18.9635145	23.048	0.071	2.313	2.155	41.70	0.068	0.995	99.970	Burst
206	6.7530430	18.9410513	21.999	0.056	2.762	2.264	-62.94	0.180	0.360	99.470	Burst
207	6.7326850	18.9651619	21.780	0.051	2.432	2.290	36.43	0.058	0.300	98.730	$\mathbf{S0}$
208	6.7511606	18.9492483	21.261	0.050	2.786	2.548	-24.11	0.085	0.050	99.980	Е
209	6.7459979	18.9538171	23.276	0.075	2.233	1.624	-38.00	0.273	2.265	96.730	Burst
210	6.7386826	18.9576147	21.413	0.052	3.700	2.580	48.97	0.303	0.100	99.990	Im
211	6.7408262	18.9594988	23.127	0.088	3.987	1.476	58.88	0.630	1.335	91.000	Burst
212	6.7776323	18.9278721	23.463	0.082	2.024	1.731	41.15	0.145	2.505	99.960	Burst
214	6.7494303	18.9531993	22.746	0.066	2.287	1.997	29.62	0.126	1.815	88.150	Burst
216	6.7666520	18.9379382	23.462	0.122	2.501	1.399	-43.17	0.440	2.260	99.770	Burst
219	6.7356422	18.9664179	23.828	0.113	2.314	1.430	-50.28	0.382	0.050	99.990	\mathbf{Sc}
220	6.7341067	18.9589247	22.648	0.067	2.542	2.141	50.06	0.158	2.090	99.990	Burst
222	6.7690442	18.9387618	22.830	0.066	2.385	1.965	-45.93	0.176	0.555	99.960	\mathbf{Sa}
224	6.7622651	18.9454525	23.963	0.129	1.723	1.167	-49.25	0.323	2.635	99.180	\mathbf{Sa}
225	6.7326210	18.9628032	21.668	0.053	4.197	1.976	-80.87	0.529	0.750	99.970	\mathbf{Sb}
226	6.7563472	18.9416330	24.189	0.111	1.639	1.287	-12.54	0.215	1.975	99.640	Burst
229	6.7778193	18.9350354	20.060	0.048	3.848	3.395	-4.38	0.118	2.335	98.240	Burst
232	6.7386272	18.9693037	23.388	0.117	2.524	1.401	-82.57	0.445	0.350	99.830	Burst
234	6.7684073	18.9444066	22.783	0.071	2.243	2.024	33.94	0.098	0.450	99.930	$\mathbf{S0}$
236	6.7230807	18.8945183	23.927	0.104	2.001	1.431	-69.78	0.285	2.265	98.600	Burst
237	6.7624847	18.9504623	23.143	0.090	2.117	1.727	-50.93	0.184	1.665	91.760	Burst
242	6.7399926	18.9729042	20.365	0.048	3.984	2.893	-86.99	0.274	0.390	92.300	Burst
243	6.7526236	18.9634728	22.415	0.063	2.742	2.217	66.55	0.191	0.390	98.010	Burst
244	6.7556480	18.9619019	22.713	0.064	2.557	1.750	53.68	0.316	2.220	97.480	Burst

#	RA	Dec	R mag	Error	А	В	Θ	Ellipticity	Z	%	Туре
249	6.7529914	18.9288353	24.528	0.186	1.629	0.973	2.74	0.403	1.340	100.000	\mathbf{Sc}
250	6.7587620	18.9214606	23.781	0.128	1.868	1.380	-30.13	0.261	0.295	99.880	Burst
251	6.7601180	18.9234034	23.604	0.094	1.826	1.556	32.26	0.148	3.695	99.790	Burst
257	6.7709314	18.9388985	23.701	0.122	1.835	1.429	-5.32	0.221	2.065	99.930	Burst
259	6.7713246	18.9503185	24.279	0.144	1.103	0.501	89.53	0.546	2.950	90.880	Burst
262	6.7399152	18.9497944	23.633	0.105	2.680	1.952	-25.90	0.272	3.305	99.950	Е
264	6.7252848	18.9449157	24.101	0.128	2.223	1.609	-29.12	0.276	2.405	95.140	\mathbf{Sc}
265	6.7322505	18.9426029	24.240	0.157	1.487	1.022	44.88	0.313	0.635	100.000	\mathbf{Sa}
268	6.7421957	18.9593653	24.362	0.166	2.201	1.406	-69.58	0.361	2.695	96.410	Sd
269	6.7459558	18.9607601	24.038	0.166	1.677	1.430	38.54	0.147	3.540	99.900	\mathbf{Sa}
271	6.7343845	18.9654988	23.510	0.128	1.640	1.435	-47.48	0.125	3.800	87.610	Е
272	6.7426444	18.8917468	23.186	0.106	2.120	1.636	60.39	0.228	0.495	99.270	Burst
274	6.7448906	18.8886102	23.669	0.109	2.148	1.379	-16.61	0.358	3.600	99.990	Burst
275	6.7470753	18.8968668	24.030	0.156	1.605	1.014	-44.01	0.368	1.390	99.590	Burst
277	6.7346553	18.9027207	24.655	0.183	1.423	1.141	35.47	0.198	1.635	96.560	Burst
278	6.7299996	18.9017787	24.900	0.159	1.918	0.701	54.44	0.635	1.530	99.990	Е
279	6.7307257	18.9060285	24.005	0.160	1.525	1.201	20.44	0.212	1.665	96.430	Burst
281	6.7317820	18.9082760	24.037	0.112	1.973	1.415	-18.91	0.283	2.260	99.990	Burst
282	6.7424519	18.9049482	22.455	0.065	3.378	1.967	11.62	0.418	0.350	99.020	Burst
283	6.7442023	18.9115360	24.703	0.141	1.391	1.059	47.77	0.239	2.240	100.000	Burst
284	6.7494647	18.9100215	23.967	0.134	1.804	1.208	-43.74	0.330	2.635	99.990	Im
285	6.7483167	18.9166267	23.927	0.110	1.999	1.173	35.16	0.413	0.535	93.320	Burst
286	6.7401317	18.9248120	23.490	0.098	2.237	1.546	-42.31	0.309	0.430	89.410	Burst
287	6.7398958	18.9205145	24.562	0.140	1.787	1.020	-14.99	0.429	2.670	97.450	$\mathbf{S0}$
288	6.7357648	18.9217685	23.792	0.125	1.426	1.284	20.96	0.100	1.685	99.990	Burst
289	6.7302260	18.9126764	23.928	0.160	3.339	0.867	-46.04	0.740	0.420	98.610	Burst
290	6.7290354	18.9142986	23.422	0.109	2.211	1.813	-49.87	0.180	1.290	99.670	$\mathbf{S0}$
291	6.7257716	18.9075410	23.756	0.094	2.035	1.415	-36.30	0.304	2.090	99.720	Burst
294	6.7164892	18.9055719	23.101	0.085	3.120	1.616	-72.57	0.482	0.100	99.990	Burst
297	6.7041489	18.9357052	20.802	0.050	4.402	3.699	34.14	0.160	0.515	85.610	Burst
298	6.7090313	18.9381792	23.041	0.089	3.789	1.971	-54.30	0.480	0.640	99.750	\mathbf{Sa}
299	6.7156201	18.9356332	23.920	0.101	2.655	1.027	-51.73	0.613	1.115	99.990	Burst
300	6.7195287	18.9395636	24.084	0.109	1.873	1.334	-33.51	0.288	0.315	100.000	Burst
302	6.7356819	18.9288233	24.821	0.143	1.144	1.013	-47.51	0.114	2.695	100.000	Burst
304	6.7302887	18.9218180	25.109	0.268	1.198	0.903	-44.68	0.246	1.265	99.910	Burst
305	6.7164892	18.9055719	23.101	0.085	3.120	1.616	-72.57	0.482	0.100	99.990	Burst
308	6.7114628	18.9055225	25.485	0.186	1.024	0.594	-86.17	0.420	1.660	98.740	Е
310	6.7036108	18.9143316	23.163	0.092	3.002	1.722	-39.10	0.426	1.495	98.900	Sd
311	6.7284450	18.9284654	24.174	0.154	1.481	1.099	-19.94	0.258	2.215	99.980	Е

Таблица 5. Каталог объектов, часть 4