ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ СПЕЦИАЛЬНАЯ АСТРОФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК

На правах рукописи УДК 524.7-77

МУФАХАРОВ ТИМУР ВАСИЛОВИЧ

НАБЛЮДАТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ ШИРОКОДИАПАЗОННОГО ИЗЛУЧЕНИЯ БЛАЗАРОВ

Специальность 01.03.02 — астрофизика и звездная астрономия

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: доктор физико-математических наук Мингалиев Марат Габдуллович

Нижний Архыз – 2015

Содержание

Be	веден	ие		5
1	Акт	ивные	галактические ядра	15
	1.1	Общи	е сведения	15
	1.2	Унифі	ицированная модель	16
	1.3	Блазар	ры	20
2	Мно	оголетн	иее и многочастотное исследование блазаров на РАТАН-600	25
	2.1	Набли	одения на радиотелескопе РАТАН-600	25
		2.1.1	Методика наблюдений и особенности телескопа	25
		2.1.2	Параметры приемной аппаратуры	26
		2.1.3	Калибровка измерений по плотности потока	28
		2.1.4	Информационно-аналитическая система оценки парамет-	
			ров радиоисточников в континууме на РАТАН-600	30
	2.2	Актуа	льность мониторинга	33
	2.3	Описа	ние выборки	35
	2.4	Рассчи	итанные параметры	37
	2.5	Катал	ог блазаров, наблюдаемых на РАТАН-600 - BLcat	38
		2.5.1	Организация каталога	38
		2.5.2	Измерения частоты максимума синхротронной компоненты	41
	2.6	Заклю	рчение	42
3	Изу	чение с	связи излучения в джете и аккреционном диске блазаров	
	с ис	пользо	ванием многочастотных данных РАТАН-600	43
	3.1	Введе	ние и актуальность	43
	3.2	Teope	тические предсказания соотношения потоков от BLR и от	
		джета		45
	3.3	Описа	ние выборки и наблюдательных данных	46
	3.4	Анали	из корреляции потока в BLR и широком диапазоне частот	51

	3.5	Влияние переменности на результат корреляции	52
	3.6	Обсуждение результатов	;3
	3.7	Выводы и заключение	55
4	Кор	реляция излучения в гамма и радиодиапазоне для блазаров по	
	дані	ным телескопов Fermi-LAT и РАТАН-600	60
	4.1	Введение и актуальность	50
	4.2	Описание выборки	53
	4.3	Результаты	66
		4.3.1 Корреляция потоков	66
		4.3.2 Оценка значимости полученных корреляций	58
		4.3.3 Корреляция светимостей	59
	4.4	Выводы и заключение	'1
5	Исс.	едование синхротронной компоненты в спектральном распре-	
	деле	нии энергии блазаров	18
	5.1	Введение и актуальность	'8
	5.2	Определение частоты максимума синхротронной компоненты по	
		кривой спектрального распределения энергии	31
		5.2.1 Описание выборки и наблюдений	31
		5.2.2 Расчет частоты максимума синхротронной компоненты 8	34
		5.2.3 Результаты	36
		5.2.4 Обсуждение результатов)1
	5.3	Многоволновые квазиодновременные наблюдения шести блаза-	
		ров с низкочастотным максимумом синхротронной компоненты 9)2
		5.3.1 Выборка VLSP-блазаров)2
		5.3.2 Наблюдения и обработка)3
		5.3.3 Результаты)5
	5.4	Заключение)9
3a	ключ	ение)2
Te	рмин	ология и сокращения)5
Ст	іисок	литературы	5

Приложение А.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	. 1	15	
Приложение Б.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	. 1	21	

Введение

Данная работа посвящена изучению активных галактических ядер (АЯГ). АЯГ характеризуются сильной светимостью, нетепловым видом спектра, обычно поляризованным излучением. Объекты данного класса являются сильно и быстро переменными в широком диапазоне частот — от радио до гамма. По своим наблюдательным свойствам активные ядра галактик подразделяются на несколько подклассов. Причем классификацию можно провести по различным параметрам: наличию или отсутствию линии в спектре, компактности, морфологии джета, наличию или отсутствию «радиоушей» и т.д. Но наиболее распространенное деление на два основных класса: «радиотихие» и «радиогромкие». К первым можно отнести сейфертовские галактики и квазары, у которых светимость в радиодиапазоне не доминирует над светимостью в других диапазонах; ко второму же подклассу тогда относятся блазары, радиогалактики и «радиогромкие» квазары. Согласно унифицированной схеме, различие в наблюдательных характеристиках АЯГ объясняется ориентацией джета по отношению к наблюдателю. В этой, общепринятой на данный момент модели, центральным объектом является сверхмассивная черная дыра (СМЧД), окруженная аккреционным диском, образующимся из падающего на нее вещества. Вещество в диске движется вокруг центральной машины и со временем «падает» на нее, при этом происходит переработка гравитационной энергии в излучение. Из центральной части объекта выбрасываются релятивистские струи вещества — джеты. На различном расстоянии от центрального объекта присутствуют облака газа, движущиеся в гравитационном потенциале СМЧД. Облака газа, находящиеся близко к СМЧД, ионизируются излучением аккреционного диска и продуцируют широкие эмиссионные линии; облака, находящиеся дальше от СМЧД, движутся медленнее и образуют узкие эмиссионные линии. В зависимости от того, под каким углом ориентирован такой объект к лучу зрения наблюдателя, фиксируются влияния различных компонент

(вышеперечисленных) в излучение и проявляются различные наблюдательные характеристики АЯГ. В данной работе исследуются блазары — АЯГ, джет которых виден наблюдателю на Земле под небольшим углом.

Актуальность задачи

На сегодняшний день изучение активных галактических ядер (АЯГ) является одной из интереснейших и многообещающих областей в астрофизике. С момента своего открытия этот класс объектов привлекает к себе внимание. Плазма, движущаяся с околосветовыми скоростями в джете, ультракомпактность центральной области, демонстрирующей экстремальную яркость, и многие другие необыкновенные свойства обеспечивают неугасающий интерес к АЯГ. За последние годы было запущено много выдающихся телескопов, одной из главных задач которых является изучения феномена АЯГ: космический телескоп Fermi-LAT, изучающий АЯГ в гамма-диапазоне, AGILE (итальянская орбитальная обсерватория для наблюдения в рентгеновском и гамма-диапазоне), NuSTAR (жесткий рентгеновский диапазон), WISE (космический телескоп, проводящий наблюдения в ИК-диапазоне), РадиоАстрон (космический радиотелескоп наземнокосмического интерферометра) и др. Все эти миссии призваны помочь ученым приблизится к пониманию уникальных процессов, происходящих в АЯГ. Наиболее обсуждаемыми и важными вопросами в этой области являются: структура магнитного поля вблизи центральной машины и в джете, механизм формирования гамма-излучения, его связь с длинноволновым излучением, происхождение джета, причина его необычайно сильной коллимации и др. Существуют много типов АЯГ, разделяемых по наблюдательным проявлениям активности. Наиболее мощные источники излучения во всех диапазонах, к тому же сильно и быстро переменные, из них — это блазары. Экстремальные проявления активности блазаров объясняются джетом, ориентированным под небольшим углом к наблюдателю, излучение которого носит нетепловой характер и объясняется синхротронным механизмом излучения релятивистских частиц. Блазары — одни из самых ярких источников на небе в гамма- и радиодиапазоне.

Наземными радиотелескопами решаются важные задачи по исследованию структуры центральных областей АЯГ (РСДБ метод), переменности излучения на различных длинах волн (от мм до дм), эволюции радиоспектров и др. Исследования проводятся как одиночными антеннами, так и в интерферометрических

6

сетях (ALMA, EVN, VLBA и др.), а также в рамках международных многоволновых программ (WEBT, GASP). Наблюдательные данные радиотелескопа РАТАН-600, широко использованные в данной работе, являются надежной наблюдательной основой для проверки и дальнейшего развития существующих теоретических моделей. Основным преимуществом использования наблюдательного материала РАТАН-600 является многочастотность и практически одновременность получаемых радиоданных. Особенностью этого телескопа также является возможность проводить постоянный мониторинг большого числа блазаров. Анализ мгновенных радиоспектров совместно с привлечением наблюдательных данных из других диапазонов позволяет узнать характер процессов, происходящих в блазарах и уточнить параметры, связанные с их строением.

Цели и задачи исследования

Целью данной работы является комплексное исследование наблюдательных характеристик блазаров и связи их излучения в различных диапазонах электромагнитного спектра. Для достижения поставленной цели был сформулирован ряд задач:

- Проведение многочастотных долговременных наблюдений большого списка блазаров (несколько сотен) на радиотелескопе РАТАН-600; наблюдения проводились на частотах 2.3, 4.8, 7.7, 11.2 и 21.7 ГГц в период 2010–2014 гг. Обработка наблюдательного материала и получение мгновенных радиоспектров исследуемых объектов для ряда наблюдательных эпох.
- Изучение взаимосвязи излучения в джете и аккреционном диске блазаров; корреляции излучения в радио/гамма диапазонах с привлечением литературных данных и измерений РАТАН-600.
- Исследование параметров синхротронной компоненты спектрального распределения энергии для блазаров из списка РАТАН-600 по литературным данным; использование собственных почти одновременных наблюдательных данных в радио- и оптическом диапазоне ряда блазаров для решения этой задачи.

Научная новизна и достоверность результатов

Многочастотные измерения на радиотелескопе РАТАН-600 300 блазаров, проведенные в период 2010–2014 гг., являются новыми для исследуемой выборки и представлены в каталоге BLcat. Многополосная фотометрия в оптическом диапазоне и измерения звездных величин проведены автором, полученные результаты являются новыми для исследованных блазаров.

Интерактивный каталог измерений объектов типа BL Lacertae на РАТАН-600 является новым и первым в своем роде каталогом одновременных радиоизмерений на четырех-шести частотах (содержит более 300 объектов).

Результаты анализа корреляции потоков в радио- и гамма-диапазонах, выполненного с использованием квазиодновременных измерений телескопов РАТАН-600 и Fermi-LAT, получены впервые для пяти радиочастот.

Параметры синхротронной компоненты в спектральном распределении энергии впервые оценены для почти 900 блазаров из списка мониторинга на РАТАН-600.

Измерения и обработка в радиодиапазоне производились на одном инструменте (РАТАН-600) с использованием штатных программных средств и общепринятых методов (апробированных многими исследователями), что исключает возможные систематические ошибки, возникающие при сравнении данных с разных телескопов, тем более полученных в разные эпохи. Наблюдения и обработка в оптическом диапазоне (Цейсс-1000) также проводились апробированными ранее методами, с использованием стандартных общепринятых программных средств.

Научная и практическая значимость

Научная ценность состоит в получении новых радиоспектров объектов. Результаты анализа спектральных свойств источников могут быть использованы в дальнейших экспериментальных и теоретических исследованиях природы объектов и механизмов их излучения.

Результаты анализа связи излучения блазаров в разных диапазонах электромагнитного спектра могут использоваться в любых других исследованиях по этому направлению.

Интерактивный каталог измерений объектов типа BL Lacertae является полезным инструментом в изучении эволюции синхротронных радиоспектров, кривых блеска и переменности этого типа блазаров.

Частота максимума синхротронной компоненты спектрального распределения энергии, оцененная для большого числа (почти 900) блазаров, является важным параметром характеризующим излучение блазаров и полученные ре-

8

зультаты могут быть полезными для астрофизиков, изучающих этот редкий подкласс АЯГ.

Результаты, приведенные в данной диссертации и опубликованные в научных статьях, могут быть использованы другими исследователями АЯГ и блазаров.

Основные результаты, выносимые на защиту

- 1. Результаты многочастотных наблюдений на РАТАН-600 измерения плотности потока на частотах 2.3, 4.8, 7.7, 11.2 и 21.7 ГГц; анализ радиоспектров нескольких сотен блазаров.
- Результаты анализа взаимосвязи излучений в джете и аккреционном диске блазаров, проведенного с использованием данных РАТАН-600 и доступных литературных данных. Показано, что состояние лацертид в радиодиапазоне (активное или спокойное) влияет на величину коэффициента корреляции потока в радиодиапазоне и потока от области образования широких линий.
- 3. Анализ корреляции излучения в радио- и гамма-диапазонах, при использовании квазиодновременных наблюдательных данных телескопов РАТАН-600 и Fermi-LAT, выявил значимую корреляцию для обоих подклассов блазаров лацертид и квазаров с плоским спектром, для всех пяти рассмотренных радиочастот (2.3–21.7 ГГц) и двух гамма полос (0.1–1 ГэВ). Полученный результат говорит в пользу тесной взаимосвязи гамма- и радиоизлучения и образования их из одной популяции фотонов.
- 4. Результаты оценки значения частоты максимума синхротронной компоненты (*v*^s_{peak}) спектрального распределения энергии (SED) для выборки 875 блазаров из наблюдательного списка РАТАН-600 по неодновременным литературным данным. На основе этого проведена классификация блазаров выборки по типу SED и найдено различие в распределении этого параметра для двух подклассов блазаров лацертид и квазаров с плоским спектром.
- Результаты квазиодновременных наблюдений в оптическом и радиодиапазоне для шести объектов — блазаров с очень низкочастотным максимумом синхротронного излучения (VLSP). Определено значение v^s_{peak} для них и подтверждена классификация как VLSP трех из них.

Апробация работы

Основные результаты диссертации докладывались на следующих конференциях:

- XLII Young European Radio Astronomers Conference, ПРАО, Пущино, Россия, 18–21 сентября 2012 г.
- 2. The XII Finnish-Russian Radio Astronomy Symposium, Биологическая станция в Ламми, Финляндия, 15–18 октября 2012 г.
- 3. XXX конференция «Актуальные проблемы внегалактической астрономии», ПРАО, Пущино, Россия, 8–11 апреля 2013 г.
- 4. Всероссийская астрономическая конференция «Многоликая Вселенная» (ВАК-2013), Санкт-Петербург, Россия, 23–27 сентября 2013 г.
- 5. XLIV Young European Radio Astronomers Conference, Университет им. Н. Коперника, Торунь, Польша, 8–12 сентября 2014 г.
- 6. Конференция-семинар «Физика космосу», МКШ им. В.Н. Челомея, Байконур, Россия, 25–30 октября 2014 г.
- 7. Конкурс-конференция работ сотрудников САО РАН, Нижний Архыз, Россия, 6 февраля 2015 г.
- 8. Астрофизический семинар на РАТАН-600, САО РАН, Россия, 30 апреля 2015 г.
- 9. The XIII Finnish-Russian Radio Astronomy Symposium, ГАО РАН, Санкт-Петербург, Россия, 25–29 мая 2015 г.

Публикации

Материалы диссертации опубликованы в двенадцати печатных работах, из них шесть — в рецензируемых журналах (рекомендованных ВАК и индексируемых WoS), шесть — в сборниках тезисов докладов. Основные результаты изложены в следующих статьях:

- M. Mingaliev, Yu. Sotnikova, T. Mufakharov, A. Erkenov, R. Udovitskiy. "Gigahertz-Peaked spectrum sources. Galaxy and Quasars" Astrophysical Bulletin, Volume 68, Issue 3, pp.257-267, 2013
- T. Mufakharov, Yu. Sotnikova, A. Erkenov, M. Mingaliev. "Study of the Relation between the Jet and Accretion-Disk Emission in Blazars Using RATAN-600 Multifrequency Data" Astrophysical Bulletin, Volume 69, Issue 3, pp.247-259, 2014
- 3. M. Mingaliev, Yu. Sotnikova, R. Udovitskiy, T. Mufakharov, E. Nieppola, A. Erkenov. "RATAN-600 multi-frequency data for the BL Lac objects" Astronomy and Astrophysics, Volume 572, p. 59, 2014

- 4. T. Mufakharov, M. Mingaliev, Yu. Sotnikova, Ya. Naiden, A. Erkenov. "The observed radio/gamma-ray emission correlation for blazars with the Fermi-LAT and the RATAN-600 data" Monthly Notices of the Royal Astronomical Society, Volume 450, Issue 3, p.2658-2669, 2015
- T. Mufakharov, Yu. Sotnikova, M. Mingaliev, A. Erkenov. "Multifrequency quasi-simultaneous observations of six low frequency peaked blazars" Astrophysical Bulletin, Volume 70, Issue 3, pp.273-279, 2015
- M. Mingaliev, Yu. Sotnikova, T. Mufakharov, A. Erkenov, R. Udovitskiy. "A Study of the Synchrotron Component in the Blazar Spectral Energy Distributions" Astrophysical Bulletin, Volume 70, Issue 3, pp.264-272, 2015

Личный вклад автора

Все работы, перечисленные в списке публикации по теме диссертации, выполнены в соавторстве. Вклад диссертанта в работы с первым авторством (2, 4, 5 из списка публикаций) является определяющим. Кроме этого, личный вклад в каждую из публикации заключается в следующем.

В статье 1: равный вклад в получение зависимостей, расчет параметров, построение графиков, написание соответствующих разделов статьи, обсуждение результатов; равный вклад при подготовке и публикации каталога в базе данных VizieR.

В статье 2: автору принадлежит постановка задачи, проведение расчетов, вклад в обсуждение результатов и публикацию статьи.

В статье 3: работа с данными из литературы, представленными в каталоге, подготовка необходимого описательного материала для статьи, активное участие в написание текста, равный вклад в обсуждение результатов и публикацию статьи.

В статье 4: автору принадлежит постановка задачи, большая часть вычислений, основной вклад в обсуждение результатов и публикацию статьи.

В статье 5: автору принадлежит постановка задачи, получение наблюдательных данных, все расчеты, основной вклад в обсуждение результатов и публикацию статьи.

В статье 6: автором частично получены исследуемые параметры для большой выборки объектов по литературным данным, вклад соавторов в получение зависимостей, обсуждение результатов и публикацию статьи одинаков.

Содержание и объем работы

Диссертация состоит из введения, пяти глав, заключения, списка цитируемой литературы (162 наименования) и двух приложений. Объем работы — 127 страниц печатного текста, включая 27 рисунков.

Во **Введении** дается общая характеристика работы, обосновывается актуальность исследования, приводятся цели и задачи, научная новизна и научная и практическая ценность, приводятся результаты, выносимые на защиту, дается список конференций и работ, где были представлены результаты диссертации, описывается степень личного вклада автора.

В Главе 1 дается определение АЯГ и приводится история их открытия (п. 1.1), далее формулируется современное представление об АЯГ в рамках унифицированной модели (пункт 1.2), дается краткое описание особенностей излучения основных представителей, а также уделяется особое внимание основному подклассу АЯГ, изучаемому в данной работе — блазарам (п. 1.3).

Глава 2 посвящена описанию многолетнего мониторинга большой выборки блазаров на РАТАН-600. Результаты этих многочастотных наблюдений широко использованы в данной диссертации. В пункте 2.1 в частях 2.1.1-2.1.3 изложена методика наблюдений, обработки и калибровки измерений на радиотелескопе РАТАН-600, дано описание приемного комплекса, а в пункте 2.1.4 представлена информационно-аналитическая система оценки параметров радиоисточников в континууме на РАТАН-600. В пункте 2.2 повествуется об актуальности подобных мониторингов и исследовании блазаров на РАТАН-600. Описание выборки и наблюдений дано в части 2.3 (полный список источников приведен в Приложении А). В пункте 2.4 дано определение индекса переменности и спектрального индекса — основных характеристик исследуемых объектов в радиодиапазоне, представленных в каталоге BLcat. Описание интерактивного онлайн каталога BLcat, представляющего в удобной форме радиоизмерения большой выборки блазаров на РАТАН-600, приведено в пункте 2.5. В пункте 2.5.2 описаны проведенные измерения максимума синхротронной компоненты (по литературным данным) и последующая классификация блазаров (на подклассы HSP/ISP/LSP).

В Главе 3 рассмотрена связь излучения в джете и аккреционном диске блазаров. Теоретические выкладки о связи излучений джета и BLR приведены в пункте 3.2; в пункте 3.3 приведено описание выборки и использованных наблюдательных данных, далее в пунктах 3.4 и 3.5 представлены результаты корреляционного анализа и оценка влияния переменности в радиодиапазоне на результат. Показано, что сильная переменность всего нескольких источников оказывает значительное влияние на корреляцию. Обсуждение результатов с учетом неоднородности данных и влияния переменности на корреляцию излучений приведено в пункте 3.6, выводы данной работы о наличии связи потока из радиодиапазона и потока от BLR области для блазаров двух типов — BL Lac и FSRQ сформулированы в пункте 3.7.

В Главе 4 приводятся результаты анализа корреляции излучения блазаров в гамма- и радиодиапазоне по данным телескопов Fermi-LAT и РАТАН-600. В вводной части 4.1 этой Главы приводится актуальность темы и краткий обзор подобных исследований. Описание выборки и использованных данных приведено в пункте 4.2. Результаты корреляционного анализа для потоков и светимостей приведены в пункте 4.3. Выводы о наличии взаимосвязи излучений радио- и гамма-диапазоне с учетом проведенного теста на значимость полученных коэффициентов корреляции сформулированы в пункте 4.4. Полученные результаты говорят в пользу тесной взаимосвязи гамма- и радиоизлучения и образования их из одной популяции фотонов (в рамках SSC модели).

В Главе 5 описывается исследование синхротронной компоненты в спектральном распределении энергии различных типов и подклассов блазаров. Акутальность исследования приведена во вводной части (пункт 5.1). В первой части Главы оценивается основной параметр спектрального распределения энергии частота максимума синхротронного излучения (ν_{neak}^{s}) для 877 объектов выборки. Для этого используются неодновременные архивные данные каталога блазаров Roma-BZCAT и инструмент ASDC SED Builder Tool. Результаты статистического анализа распределений различных подклассов блазаров по частоте максимума синхротронного излучения изложены в пункте 5.2.3. Обсуждение полученных результатов, сравнение с предыдущими исследованиями распределения ν_{neak}^{s} представлено в пункте 5.2.4. В пункте 5.3 этой Главы приводятся результаты собственных квазиодновременных наблюдений шести блазаров на телескопах Цейсс-1000 и РАТАН-600, проведенных в 2014 году. Исследовались блазары - кандидаты в объекты с очень низким значением максимума синхротронной компоненты (very low synchrotron peaked — VLSP, с $\nu_{peak}^s < 10^{13}$ Гц). Выборка описана в пункте 5.3.1. В части 5.3.2 этой Главы приводится описание наблюдений и обработки данных в двух диапазонах. В результате, для трех источников

(PKS 0446+11, [HB89] 1308+326 и 3С 345) подтвердилась их классификация как VLSP, для остальных трех блазаров расчеты показали $\nu_{peak}^s > 10^{13}$ Гц (п. 5.3.3). В заключительной части 5.4 суммированы результаты работы.

В Заключении суммированы основные результаты работы.

В **Списке литературы** дан перечень публикаций, цитируемых и используемых в работе.

В **Приложении А** приведена таблица со списком блазаров и их параметрами, которая обсуждается в **Главе 2**.

В **Приложении Б** приведена таблица с измерениями плотностей потока на РАТАН-600 и рисунки (зависимости излучения в радио- и гамма-диапазонах), которые обсуждаются в **Главе 4**.

Глава 1

Активные галактические ядра

1.1 Общие сведения

Галактики, необычайно высокую светимость центральной части которых невозможно объяснить лишь присутствием звезд, называют галактиками с активными ядрами или сокращенно АЯГ (в англоязычной литературе — active galactic nuclei, AGN). Существует множество видов АЯГ, различающихся по спектральным линиям, поляризации и переменности излучения в различных диапазонах электромагнитного спектра, морфологии и т.д. При изучении АЯГ рассматриваются вопросы фундаментальной физики: процессы, происходящие в непосредственной близости от черной дыры (ЧД), механизмы формирования сильно коллимированного выброса вещества в виде струи (джет), излучение высоких энергий и др.

Американский астроном Карл Сейферт в 1943 году первым открыл галактики с активными ядрами [1]. Он отметил, что в центральных областях некоторых спиральных галактик наблюдаются мощные и широкие эмиссионные линии, что свидетельствует о наличии в этой области галактики горячего межзвездного газа, движущегося с большими скоростями. Подобные галактики, составляющие примерно 1% от спиральных, получили название сейфертовских. Позже сейфертовские галактики были разделены на два типа Type-1 Seyfert и Type-2 Seyfert. Сейфертовские галактики первого типа характеризуются широкими разрешенными и более узкими запрещенными линиями в спектре, в то время как у Seyfert-2 галактик все линии являются узкими. Это, предположительно, вызвано тем, что в Seyfert-2 галактиках область с широкими линиями скрыта от наблюдателя пылью. Центральная область (ядро) активных галактик обладает очень сильной светимостью ($10^{41} - 10^{44}$ эрг/с для сейфертовских галактик и $10^{46} - 10^{47}$ эрг/с для наиболее мощных квазаров), хотя и является очень компактной (< 1 пк), при этом излучение носит переменный характер во всех диапазонах (на временных масштабах от суток до десятилетий).

По характеру проявления активности в радиодиапазоне принято разделять АЯГ на два основных класса: «радиотихие» и «радиогромкие». К первым можно отнести сейфертовские галактики и квазары, у которых светимость в радиодиапазоне не доминирует над светимостью в других диапазонах; ко второму же подклассу тогда относятся блазары, радиогалактики и «радиогромкие» квазары. Вообще, степень «радиогромкости» («яркости» в радиодиапазоне) можно определить как по абсолютной [2], так и по относительной шкале [3]. Последнее определение используется наиболее широко и описывает отношение потока в радиодипазоне (на длине волны $\lambda = 6$ см) к потоку в оптическом диапазоне (на длине волны $\lambda = 4400$ Å).

1.2 Унифицированная модель

На Рисунке 1.1 представлена унифицированная схема, которая на сегодняшний день является основной моделью АЯГ и объясняет все наблюдаемое разнообразие активных галактических ядер ориентацией системы по отношению к лучу зрения наблюдателя.

Рис. 1.1: Схематическое представление центральной части АЯГ и ее основных компонентов согласно унифицированной модели, рисунок заимствован из работы [4]. В центре — черная дыра, окруженная аккреционным диском. Область образования широких эмиссионных линий (BLR) находится над аккреционным диском (на рисунке она представлена небольшими облаками, находящиеся в непосредственной близости от центрального объекта). Далее следует толстый газопылевой тор, закрывающий центральную область (для наблюдателя сбоку). Более крупные облака светлого цвета — источник узких линий в спектре. Также на рисунке показан джет, исходящий из центральной области

Согласно унифицированной схеме, в центре АЯГ находится массивная черная дыра, окруженная аккреционным диском. Джеты ультрарелятивистской плазмы выбрасываются перпендикулярно к плоскости диска. На субпарсековых расстояниях от центра располагаются достаточно плотные облака газа $(N_e \sim 10^{10\pm1} \text{ см}^{-3})$, broad line region — BLR), дающие широкие эмиссионные линии в спектрах АЯГ, в то время как узкие эмиссионные линии рождаются в более разреженных областях ($N_e \sim 10^{4\pm2} \text{ см}^{-3}$, narrow line region — NLR), находящихся на килопарсековых расстояниях от черной дыры. За пределами аккреционного диска имеется молекулярный тор, содержащий пыль и дающий значительный

вклад в ИК-излучение многих АЯГ. На Рисунке 1.1 показаны перечисленные компоненты АЯГ.

Далее в тексте рассмотрены основные компоненты АЯГ согласно унифицированной модели и виды их излучений. Все перечисляемые компоненты находятся внутри родительской галактики.

Центральный объект — ЧД, масса которой обычно оценивается в $M_{BH} \sim 10^5 - 10^9 M_{\odot}.$

Области образования линий. Широкие спектральные линии образуются, предположительно, в непосредственной близости от центрального объекта (до сотни световых лет), в плотных облаках горячего газа (с плотностью $N_e \sim 10^{10\pm1}$ см⁻³ и температурой $T \sim 10^4 K$), движущихся со скоростью ~ 1000 км/с. Область образования узких спектральных линий находится дальше (на расстоянии 100–1000 пк от центральной машины), плотность газа $N_e \sim 10^{3\pm2}$ см⁻³, температура $T \sim 10^3 K$. Ширины линий достигают 100 км/с.

При падении окружающего вещества на центральный объект формируется аккреционный диск, обладающий неким угловым моментом [5], температура может достигать $T \sim 10^6 K$. Существует несколько теоретических моделей аккреционного диска с различными характеристиками (обзор по теории аккреции можно посмотреть, например, в работе [6]). В спектрах некоторых АЯГ наблюдается избыток в синей области — big blue bump (в области спектра от оптического до мягкого рентгеновского). Этот избыток, предположительно, возникает из теплового излучения аккреционного диска [7–9]. Рентгеновское излучение также возможно образуется в аккреционном диске (из быстро движущихся потоков вещества во внутренней части диска [10] или из-за переизлучения фотонов, испущенных из некого рентгеновского источника, находящегося над диском [11]).

Джет представляет собой узко-коллимированный выброс из центральной области АЯГ. Комбинация влияний центробежной силы, теплового давления и процесса Блэндфорда-Знаека может являться причиной возникновения джета. Последний включает конверсию энергии вращения ЧД в магнитном

поле аккреционного диска в электромагнитную энергию [12]. Происхождение джета до конца не изучено. Высокая степень коллимированности возможна благодаря наличию магнитного поля. Ударные волны разгоняют электроны до энергий ГэВ и ТэВ. Электроны излучают низкочастотное синхротронное излучение и высокочастотное обратное комптоновское излучение. Наиболее вероятная причина происхождения джета связана с вращением магнитных полей на больших масштабах [13]. Мощные, пронизанные магнитным полем потоки могут исходить как из магнитосферы центрального объекта, так и из аккреционного диска. Синхротронным механизмом объясняются радио- и гамма-излучение в джете. При взаимодействии джета с внешней средой (а джет может распространяться на расстояния порядка ~ Мпк) могут образовываться «горячие пятна», видимые в радиодиапазоне (radio lobes, hot spots).

Некоторые наблюдательные характеристики могут быть объяснены присутствием газопылевого тора, закрывающего собой центральную часть АЯГ. Сам тор может переизлучать фотоны, идущие от центральной машины в ИКдиапазоне [14]. Внутренняя часть тора, взаимодействуя с континуальным излучением АЯГ, частично ионизируется и образует BLR. Когда джет АЯГ наблюдается под большим углом, как бы со стороны, то газопылевой тор скрывает центральную часть и область образования широких линий, в спектре в этом случае обнаруживаются узкие линии. Такие АЯГ классифицируются как Сейфертовские галактики второго типа (Type-2 Seyfert) или как Фанаров-Райли галактика первого или второго типа (FR I или FR II) [15] с узкими линиями. У АЯГ, джет которых расположен под небольшим углом к наблюдателю, наблюдаются широкие линии в спектре и обычно такие объекты классифицируются как Сейфертовские галактики первого типа (Type-1 Seyfert), радиотихие квазары, квазары с плоским радиоспектром (FSRQ), квазары с крутым спектром и широкими линиями (SSRQ). Если джет виден под углом менее 10 градусов, то доминирует нетепловое и релятивистски усиленное излучение из джета, и такой объект определяют как блазар [16].

1.3 Блазары

Блазары составляют особенно интересный подкласс активных галактик. Эти объекты показывают переменность блеска на различных длинах волн от радио до гамма и на временных масштабах от часов до десятков лет, обнаруживают высокую и переменную поляризацию излучения, имеют выдающиеся радиоджеты, в которых наблюдаются сверхсветовые движения [17-19]. Блазары являются представителями АЯГ и характеризуются джетом, направленным под небольшим углом к наблюдателю [17, 20]. Во многих случаях джеты обладают сильной светимостью в широком интервале частот, от радио- до гаммадиапазона. Вследствие близости джета к лучу зрения наблюдателя излучение является релятивистски усиленным на одну и более звездные величины. Большинство излучения от радио- до оптического диапазона (а в некоторых случаях и в рентгеновском) является следствием синхротронного излучения в джете блазара [21–24]. Рентгеновское и гамма-излучение, возможно, вызваны обратным комптоновским рассеянием той же самой популяцией электронов, задействованных в синхротронном излучении (согласно так называемой лептонной модели; описанной, например, в работе [25]), или же синхротронным излучением протонов, ускоренных электронами в джете, столкновением этих релятивистских протонов с внутренним полем излучения (согласно так называемой адронной модели; описанной, например, в работе [26]).

Обзоры блазаров

Как известно, первые блазары были обнаружены в ходе радиообзоров. С конца 80-х годов XX века количество блазаров, обнаруженных радио- и рентгеновскими телескопами, стало достаточным, чтобы составить первые выборки данного класса АЯГ. 32 объекта типа BL Ящерицы, представленные в работе [27] можно считать первой выборкой таких объектов. Каталог АЯГ, составленный Верон-Сетти и Вероном, начиная со второго издания, включает в себя выборку блазаров. Число таких источников в этом каталоге по сравнению с первоначальными 73 (1985 г.) возросло до 1122 в версии 2006 года [28]. Блазары обнаруживаются в радиообзорах неба (NVSS, CRATES, CLASS), идентифицируются с оптическими источниками (SDSS), и именно блазары чаще всего отождествляются с рентгеновскими и гамма-источниками (RASS, Fermi-LAT [29]). Блазары образуют самый многочисленный класс объектов, отождествленных с источниками гаммаизлучения [30]. Для проведение корректной и достоверной идентификации, и определения источника как блазара, необходимо сопоставить обзоры неба в различных диапазонах, задействовать спектры объектов, поэтому наиболее полный на сегодняшний день каталог блазаров — Roma-BZCAT, составлен при использований большого количества различных обзоров и предыдущих каталогов блазаров [31]. Но современные исследования блазаров не ограничиваются лишь высокоэнергетической частью спектра (рентгеновским и гамма-излучением), космическая миссия WISE (Wide-Field Infrared Survey Explorer) исследует эти уникальные объекты в ИК-диапазоне и довольно успешно — открыты сотни новых блазаров и исследованы многие уже известные [32–34].

Можно выделить несколько обсерваторий, проводящих систематический мониторинг блазаров в радиодиапазоне. Это: (1) Metsähovi Radio Observatory, обсерватория в Финляндии, проводящая наблюдения АЯГ уже более 35 лет на 13.7 м. антенне, на частотах 22, 37 ГГц [35]; (2) University of Michigan Radio Astronomy Observatory, UMRAO (с 1979 года, используются частоты 4.8, 8 и 14.5 ГГц на 26 м. антенне) [36]; (3) Owens Valley Radio Observatory, OVRO (40 м. антенна, частота 15 ГГц) [37]. Порядка 1700 источников наблюдаются дважды в неделю по программе наземной поддержки наблюдений Fermi-LAT с 2007 года.

Подклассы блазаров

Согласно наблюдательным данным, исторически блазары разделяют на два основных подкласса: квазары с плоским спектром (flat-spectrum radio quasars -FSRQ) и объекты типа BL Ящерицы или лацертиды (BL Lacertae type objects - BL Lac). В оптическом спектре FSRQ-блазаров наблюдаются сильные, широкие эмиссионные линии, в то время как у объектов типа BL Lacertae редко когда имеются слабые эмиссионные или абсорбционные линии, чаще всего их спектр вовсе без каких-либо линий. В их спектральном распределении энергии (spectral energy distribution, SED) наблюдаются две характерные выпуклости: низкочастотную приписывают синхротронному механизму излучения, а высокочастотную — обратному комптоновскому излучению [38] (Рисунок 1.2). Синхротронная компонента SED приходится на область электромагнитного спектра от радио до мягкого рентгена, пиковая частота этого излучения может находиться в довольно широком диапазоне частот от 10¹² до 10¹⁸ Гц (обычно в ИК/оптике или УФ/мягком рентгене). Максимум второй компоненты находится в гаммадиапазоне [39,40]. Помимо разделения блазаров на FSRQ и BL Lac типы по наличию или отсутствию линий в спектре, существует также классификация бла-

21

заров на основе расположения частоты максимума синхротронного излучения в их SED. В зависимости от того, на какую частоту приходится максимум синхротронного излучения (ν_{peak}^{s}), блазары подразделяют на три подкласса: источники с $\nu_{peak}^{s} < 10^{14.5}$ Гц называют блазарами с низкочастотным максимумом синхротронного излучения (low synchrotron-peaked, LSP), при $10^{14.5} < \nu_{neak}^{s} < 10^{16.5}$ Гц и $\nu_{peak}^{s} > 10^{16.5}$ Гц, соответственно, называют блазарами с промежуточным значением максимума синхротронного излучения (intermediate synchrotronpeaked, ISP) и с высокочастотным максимумом синхротронного излучения (high synchrotron-peaked, HSP). Также в литературе принято аналогичное разделение BL Lac-блазаров на три типа: HBL, IBL и LBL это high-, intermediate- и lowenergy BL Lacs соответственно [20,41]. Причем такая классификация изначально была предложена на основе отношения потоков в рентгеновском и радиодиапазоне, и для лацертид, как более физически корректная, чем разделение на основе диапазона, в котором был обнаружен объект (X-ray-selected, XBL и Radio-selected, RBL) [41]. Почти все FSRQ-блазары являются LSP и относятся к RBL типу; большинство HSP обнаружено в рентгеновских обзорах (т.е. XBL). Но с улучшением чувствительности телескопов и предела обнаружения в радиои рентгеновских обзорах, HSP блазары обнаруживаются в радио-, а LSP блазары - в рентгеновском диапазоне. Такое историческое разделение BL Lac на XBL и RBL часто не имеет отношения к физическим различиям самих объектов [20]. Некоторые BL Lac, не будучи обнаруженными в рентгеновском диапазоне, рассматриваются как XBL блазары, на основе высокого отношения рентген/радио потоков [42,43]. Например, PKS 0548-32, PKS 2005-48 и PKS 2155-30 или оптически отождествленные Mrk 180, Mrk 421, Mrk 501 иногда рассматриваются как XBL [44]. Разделяя блазары типа BL Lac на XBL и RBL, можно получит смешанные свойства объектов, в зависимости от придерживаемой классификации.

Лацертиды или BL Lac были названы так по объекту BL Lacertae (BL Ящерицы), открытому в 1929 г. немецким астрономом К. Хофмейстером и отнесенному им к переменным звёздам [45]. Это созвездие было введено Яном Гевелием в 1690 году в небесном атласе «Уранография». Он поместил его между существующими созвездиями, сказав: «В этом месте на небе столь тесно, что ничего более крупного там не могло поместиться». Интересно, что Гевелий имел в виду вполне определённый род ящериц, а именно, кольцехвостую

22

или горную агаму, название которой (Stellio) указано в атласе и несёт «астрономический» оттенок [46]. Лишь в 1968 году Шмидт отождествил этот объект с радиоисточником [47], и при изучении его оптического спектра оказалось, что у него не обнаруживаются ни линий поглощения (как у звезд), ни эмиссионных линий (как у квазаров). Позже, в 1974 году, было установлено, что объект BL Lacertae находится в эллиптической галактике [48]. Термин «блазар» появился из комбинации двух других — BL Lac и квазар. Так как квазары, хотя и имеют эмиссионные линии в своем спектре, были по наблюдательным характеристикам похожи на объекты типа BL Lacertae.

В каталоге Roma-BZCAT (версия 5.0.0) перечислено всего порядка 3500 блазаров, но лишь для небольшого числа из них доступны квазиодновременные наблюдательные данные различных диапазонов электромагнитного спектра. Многочастотные квазиодновременные измерения плотности потока на РАТАН-600 являются важной наблюдательной информацией радиодиапазона. Возможность долговременного мониторинга большого числа блазаров на РАТАН-600 представляется значимым приемуществом этого инструмента в изучении данного класса переменных объектов. Об актуальности исследования блазаров на радиотелескопе РАТАН-600 подробнее изложено в следующей главе в пункте 2.2.

Рис. 1.2: Спектральное распределение энергии объекта BL Lacertae (получено, используя веб-ресурс "ASDC SED Builder Tool": http://tools.asdc.asi. it)

Глава 2

Многолетнее и многочастотное исследование блазаров на РАТАН-600

2.1 Наблюдения на радиотелескопе РАТАН-600

2.1.1 Методика наблюдений и особенности телескопа

Радиотелескоп РАТАН-600 (РАдио Телескоп Академии Наук диаметром почти 600 метров) благодаря особенности своей конструкции является уникальным и единственным в своем роде инструментом астрономов. РАТАН-600 — телескоп рефлекторного типа, что позволяет реализовать наблюдения в широком диапазоне частот (от 1 до 30 ГГц) [49–51]. РАТАН-600 состоит из 895 элементов (алюминиевых щитов высотой 11.4 метра), расположенных в виде кольца (см. Рисунок 2.1). Сектора (Северный, Восточный, Южный и Западный) используются как первичные зеркала для отражения радиоизлучения. Внутри этой конструкции расположено еще одно плоское зеркало (перископ), состоящее из 124 элементов (высотой 8.5 метра), которое также используется как первичное зеркало при трехзеркальной системе наблюдений. В приемных кабинах (со вторичными зеркалами) расположены радиометры, регистрирующие излучение, после отражения от вторичного зеркала. Приемные кабины могут двигаться по радиальным и дуговым рельсовым путям; положение элементов главного зеркала может быть изменено по трем координатам. Благодаря такой подвижной системе возможно

проводить наблюдения различных участков неба. При исследовании большого числа объектов (например, мониторинг большого списка АЯГ) или при обзорах используется режим прохождения источника через неподвижную диаграмму направленнсти (ДН) сектора (200–225 элементов) РАТАН-600 [52]. ДН одного сектора РАТАН-600 имеет ножевую форму, угловое разрешение зависит от высоты установки антенны, т.к. при наблюдении объектов на различных высотах меняется фокус и форма главного зеркала. Значения углового разрешения по прямому восхождению представлены в последней колонке (обозначена AR) в Таблице 2.1, по склонению угловое разрешения в 3–5 раза хуже. Предел обнаружения радиотелескопа порядка 8 мЯн (время накопления 3 сек) на 4.8 ГГц на средних углах при хороших погодных условиях. Все наблюдения, использованные в данной работе, проводились в транзитном режиме с использованием Северного, Южного и Южного с перископом секторов РАТАН-600. В среднем за цикл каждый объект наблюдается 3–15 раз для увеличения надежности измерения спектральной плотности потока.

Рис. 2.1: Схематический вид радиотелескопа РАТАН-600. Из работы [49]

2.1.2 Параметры приемной аппаратуры

Многочастотные наблюдательные данные РАТАН-600, широко использованные в данной работе, получены на двух комплексах радиометров, размещенных в приемных кабинах №1 и №2. Современный уровень приемной аппаратуры обеспечивается сверхмалошумящими усилителями на транзисторах с высокой подвижностью электронов (НЕМТ) и цифровыми сигнальными процессорами в системе регистрации данных. Подробное описание приемных комлексов размещено на странице лаборатории радиометров континуума РАТАН-600 на сайте обсерватории САО РАН¹. Основной комплект радиометров континуума установлен в приемной кабине №1 (21.7, 11.2, 7.7, 4.8, 2.3 и 1.1 ГГц). Начиная с 2012 года проводятся систематические наблюдения объектов АЯГ с использованием неохлаждаемого приемного комплекса радиометров «ЭРИДАН» сантиметрового диапазона — 1.4, 2.7 и 6.2 см (21.7, 11.2 и 4.8 ГГц, соответственно).

Сбор данных обеспечивается путем раздельной регистрации сигналов обоих полупериодов модуляции. При последующей обработке записи полупериодов вычитаются (двухлучевой прием сигнала точечных источников), или складываются (режим полной мощности), или рассматриваются как два независимых радиометра для сильных протяженных источников. На частоте 11.2 ГГц используется двухлучевой режим приема с применением диаграммной модуляции для уменьшения влияния атмосферных флуктуаций. На частотах 4.8, 2.3 и 1.1 ГГц применяются однорупорные системы приема сигналов. Радиометры на частотах 7.7, 11.2 и 21.7 ГГц собраны по модуляционной схеме, а на 4.8, 2.3 и 1.1 ГГц – с добавлением шумов. Параметры приемников РАТАН-600 приведены в Таблице 2.1:

 f_0 — центральная частота (ГГц);

 Δf_0 — ширина полосы (ГГц);

 ΔF — чувствительность по спектральной плотности потока на единицу элемента разрешения (мЯн/beam);

ВW — ширина диаграммы для средних высот ($\delta \sim 42^{\circ}$);

AR — угловое разрешение для средних высот.

В лаборатории радиометров континуума в 2008–2009 гг. была разработана Система Сбора Данных и Управления (ССДиУ) радиометрического комплекса РАТАН-600, подробное описание дано в работе [53]. Предельно низкий собственный шум и плоский спектр шума данной измерительной системы (долговременная стабильность) позволяют проводить наблюдения на РАТАН-600 с предельно низкой абсолютной и относительной погрешностями [53].

http://www.sao.ru/hq/lrk/index.html.ru

Таблица 2.1: Параметры широкополосных приемников вторичного зеркала приемной кабины №1 и №2 РАТАН-600. Частично заимствовано со страницы лаборатории радиометров континуума РАТАН-600 http://www.sao.ru/hq/ lrk/index.html.ru

$\int f$	0,	Δf	ſ0,	Δ	F,	BW,	AR,
ΓΙ	ГГц		҉ц	мЯн	/beam	сек	уг.сек
1	2	1	2	1	2		
21.7	21.7	2.5	2.5	70	88	1.0	11
11.2	11.2	1.4	1.0	20	20	1.4	16
7.7	_	1.0	_	25	_	2.0	22
4.8	4.8	0.9	0.8	8	11	3.2	36
2.3	_	0.4	_	30	_	7.2	80
1.1	_	0.12	_	160	_	15.4	170

2.1.3 Калибровка измерений по плотности потока

Для определения плотности потока исследуемого источника используются стандартные девять калибровочных объектов из работ [54-56]: PKS 1151-34, 3С 48, 3C 147, 3C 161, 3C 286, 3C 295, 3C 309.1, J1104+76 и NGC 7027. Для измерений на низких и высоких углах используются традиционные для РАТАН-600 дополнительные калибраторы: J0240-23, J0521+16, J1347+12, J0410+76, J0016+79, J1435+76, J1609+79 и J2344+82. Измерения для некоторых калибровочных объектов скорректированы на частичное угловое разрешение и линейную поляризацию [57]. Калибраторы с принятыми значениями плотностей потоков представлены в Таблице 2.2. Калибровочные объекты отбирались с учетом следующих критериев: достаточно сильные на всем диапазоне частот РАТАН-600 и с угловыми размерами меньшими или сравнимыми с размерами ДН [58]. Лучше всего если на высоте (Н) каждого исследуемого источника будет находиться калибровочный объект. Это необходимо, т.к. с высотой источника меняется толщина атмосферы, фокус и эффективная площадь антенны. Но на практике для всей исследуемой выборки это условие выполнить трудно, калибровочные объекты имеются для небольшого числа высот. Поэтому общепринятой практикой на РАТАН-600 является построение калибровочных зависимостей (пример на Рисунке 2.4), которые позволяют вычислить коэффициент ($k_{\nu,H}$) перевода измеренных антенных температур в плотности потока:

$$F_{\mathbf{n},\nu} = k_{\nu,H} T_{\mathbf{n},\nu}, \qquad k_{\nu,H} = \frac{F_{\mathbf{\kappa},\nu}}{T_{\mathbf{\kappa},\nu}}$$

где $F_{\mu,\nu}$, $T_{\mu,\nu}$ и $F_{\kappa,\nu}$, $T_{\kappa,\nu}$ — плотность потока и антенная температура исследуемого и калибровочного источника на данной частоте (ν). Антенная температура каждого источника рассчитывается как среднее арифметическое отдельных измерений:

$$\bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i.$$

По формуле

$$\sigma_T = \sqrt{\sum_{i=1}^{n} \frac{(T_i - \bar{T})^2}{(n-1)}}$$

определяется среднеквадратичная ошибка измерения антенной температуры.

Среднеквадратичная ошибка определения плотности потока вычисляется по формуле

$$\frac{\sigma_F}{F} = \sqrt{(\frac{\sigma_T}{T})^2 + \sigma_{ns}^2 + \sigma_{cal}^2},$$

где σ_T — ошибка измерения антенной температуры, σ_{ns} — ошибка вписывания гауссианы, определяемая остаточным шумом, σ_{cal} — ошибка определения калибровочной зависимости. Ошибка абсолютной шкалы плотности потока обычно не учитывается. Ошибка, определяемая остаточным шумом обычно составляет до 1% на частотах 4.8 и 7.7 ГГц, 1–2% на 11.2 ГГц и 2–4% на 21.7 ГГц (для измерений с S/N > 5), а ошибка определения калибровочной зависимости порядка 10% на частоте 21.7 ГГц, ~ 4% на 4.8 ГГц и 6–7% на остальных частотах.

Стандартные ошибки определения плотностей потоков для исследуемых в данной диссертации блазаров составляют 10–35% на 1.1, 2.3 и 21.7 ГГц и 5–20% на остальных частотах.

Таблица 2.2: Калибровочные источники с принятыми значениями плотностей потоков в Ян (из работ [54–57])

Источ	ник	Частота, ГГц									
Имя (RATAN)	Имя (IAU)	21.7	11.2	7.7	4.8	2.3	1.1				
J1154-35	PKS 1151-34	0.731	1.429	1.997	2.931	4.594	7.763				
J0240-23	PKS 0237-23	1.000	1.181	1.639	2.662	4.740	7.005				
J0627-05	3C 161	1.256	_	4.217	6.797	12.969	24.748				
J1347+12	4C 12.50	1.029	1.661	2.123	2.820	4.129	6.018				
J0521+16	3C 138	1.068	1.925	2.618	3.749	6.143	10.225				
J1331+30	3C 286	2.598	4.258	5.517	7.486	11.543	17.788				
J0137+33	3C 48	1.203	2.427	3.573	5.616	10.774	22.325				
J2107+42	NGC 7027	5.335	6.205	6.400	5.315	2.679	0.809				
J0542+49	3C 147	1.818	3.567	5.073	7.830	14.765	28.730				
J1411+52	3C 295	0.970	2.338	3.812	6.507	14.171	31.101				
J1459+71	3C 309.1	1.035	1.679	2.209	3.121	5.348	10.019				
J1104+76	3C 249.1	0.174	0.313	0.480	0.761	1.436	3.174				
J0016+79	3C 006.1	0.145	0.408	0.636	1.088	2.267	4.680				
J0410+76	4C 76.03	1.276	1.791	2.255	2.970	4.300	6.356				
J1435+76	4C 76.08	0.191	0.335	0.444	0.622	0.981	1.531				
J1609+79	4C 79.15	0.193	0.324	0.428	0.597	0.949	1.583				
J2344+82	S5 2342+82	0.292	0.650	0.894	1.463	2.675	4.530				

2.1.4 Информационно-аналитическая система оценки параметров радиоисточников в континууме на РАТАН-600

Для обработки наблюдательных данных используются система обработки наблюдений **FADPS** (Flexible Astronomical Data Processing System) [59] и основанная на ней система автоматической обработки многочастотных данных точечных источников радиометров континуума РАТАН-600 (двух комплексов радиометров, размещенных в приемных кабинах №1 и №2) [60]. В системе имеется база данных калибровочных источников, что позволяет строить многочастотные радиоспектры объектов и производить их анализ. Примеры рабочих окон программы показаны на Рисунках 2.2-2.4.

Рис. 2.2: Пример интерактивной системы обработки наблюдательных данных (Гаусс анализ на 6.2 см) для яркого блазара 3С 454.3

Data	reduction	server

C</th <th>ilobal options</th> <th>s () L</th> <th>oading files.</th> <th>🕥 Data</th> <th>reducti</th> <th>on Gauss analysis result</th> <th>Cali measu</th> <th>bration rements</th> <th>Flux</th> <th>densi</th> <th>ty</th> <th>Import</th> <th>/Export</th> <th></th> <th>Archiv</th> <th></th>	ilobal options	s () L	oading files.	🕥 Data	reducti	on Gauss analysis result	Cali measu	bration rements	Flux	densi	ty	Import	/Export		Archiv		
	0.0138	λ menu:	0.039 @ 0.	062	◎ 06_	03_2014_1_N ® Mar_NO_67		List: I	N₂0 ⊛ I	Numbe	r of reco	ords : 4 for	Window object: 2	7 menu: 253+16 λ: 0.	.062		
		Object men	iu:		- Table 2253+16 6.2cm												
<u>0005+05</u>	<u>0006-06</u>	<u>0014+08</u>	<u>0022+06</u>	<u>0027+22</u>			nvss:2	253+16; ra(2000)	22:54	:39.4;	dec(2000) 16:13	3:22.3			
<u>0042+23</u>	<u>0049+02</u>	<u>0050-09</u>	<u>0108+01</u>	<u>0111+39</u>		name object [lambda]	Туре са	alc	. ,		Та ГК1	sgm IK1	FWHM	FWHM*Ta [s*mK]	Records number		
<u>0136-09</u>	<u>0144+27</u>	<u>0152+22</u>	<u>0202+08</u>	0204+15		2253+16[0.062]	AVER			9.348	0 _[0.0027%]	2.9368	29.224	records: 4			
0216-01	0217+08	0222+43	0238+16	0256-21		name record	calibr1	rsmcal1	bscale	0-C	Та	sgm (K1	FWHM [s]	FWHM*Ta [s*mK]	JD	date [vvvv/mm/dd]	
0331-25	0336+32	0340-21	0319+41	0359-26		r140327a2253p16_0620	7.3	0.038 [0.52%]	1	-0.19	9411.4	2.9 _[0.03%]	2.9405	29.458	2456744	2014-03-27	
0409+12	0416+01	0422+02	0424+00	0433+05		r140328a2253p16_0620	7.3	0.037 [0.51%]	1	-0.11	9376.9	2.7 _[0.03%]	2.9154	29.1	2456745	2014-03-28	
<u>0433+29</u>	<u>0449+11</u>	<u>0452+12</u>	<u>0502+13</u>	<u>0505+04</u>		r140329a2253p16_0620	7.3	0.035 _[0.48%]	1	-0.27	9579.9	2.7 _[0.03%]	2.9209	29.786	2456746	2014-03-29	
<u>0509+05</u>	<u>0530+13</u>	<u>0555+39</u>	<u>0558-13</u>	<u>0603+17</u>		r140330a2253p16_0620	7.6	0.038 [0.5%]	1	-0.27	9207.8	2.7 _[0.03%]	2.9513	28.927	2456747	2014-03-30	
<u>0613+13</u>	<u>0650+25</u>	<u>0657+24</u>	<u>0713+38</u>	<u>0725-00</u>				J]]	<u>, </u>		J]]]	
<u>0733+35</u>	<u>0738+17</u>	<u>0757+09</u>	<u>0758+39</u>	<u>0811+01</u>													
<u>0815+36</u>	<u>0818+42</u>	<u>0825+03</u>	<u>0834+44</u>	<u>0836+41</u>													
0850+46	0854+20	<u>0909+42</u>	0911+33	0923+41													
<u>0937+36</u>	0938-07	0953+28	<u>1014+23</u>	<u>1015+12</u>													
1037+00	<u>1043+24</u>	<u>1051+21</u>	<u>1102+22</u>	1104+38		Par abort											
1114+32	125+26	1046.00	<u>1150+24</u>	1010.00		Granh											
1215+35	1415+12	1421+22	1425+24	1450+00		List del records [0]											
1450-05	1415+13	1421+28	1435+31	1450+09													
1453+35	1457+07	1505+03	1510+31	1516+19													

Рис. 2.3: Пример рабочего окна интерактивной системы обработки наблюдательных данных (этап получения антенных температур T_a и ошибок). Слева — список источников, справа — параметры измерения объекта 3С 454.3 на РАТАН-600, включая параметры приемной аппаратуры

Рис. 2.4: Калибровочная зависимость (для частоты 4.8 ГГц), полученная в интерактивной системе, для расчета спектральной плотности потока

2.2 Актуальность мониторинга

Большинство существующих каталогов объектов типа BL Lac основаны на сопоставлении обзоров в рентгеновском и радиодиапазоне и отождествлении с оптическими источниками [61–63]. Наиболее полным каталогом известных блазаров на данный момент является Roma-BZCAT² [31]. Источник должен обладать целым рядом наблюдательных характеристик, для того чтобы считаться блазаром и быть включенным в этот каталог. Так, критериями отбора являются: оптическое отождествление и наличие оптического спектра, светимость в рентгеновском диапазоне $\geq 10^{43}$ эрг/с и компактность радиоисточника. Таким образом, Roma-BZCAT является наиболее достоверным собранием блазаров. Последняя версия этого каталога (версия 5.0.0) содержит 1425 блазаров типа BL Lac (лацертид), а всего блазаров более 3500. Тем не менее, лишь для небольшого числа блазаров представляется возможным найти многоволновые наблюдательные данные из различных диапазонов. А наблюдения, проведенные одновременно (или ква-

²http://www.asdc.asi.it/bzcat/

зиодновременно), доступны для еще меньшего числа объектов. Важность наличия таких данных сложно переоценить, так как классификация подклассов блазаров, определение важнейших физических параметров, исследование физических процессов, происходящих в этих уникальных объектах, относящихся к АЯГ, — все это основано на наблюдательных данных и их достоверности. Также важным является долговременный мониторинг блазаров, в силу их переменной природы. Блазар может как проявлять быструю и частую переменность, так и не показывать изменение блеска в течение многих лет (см., например, [64]). Из ряда работ (например, [65]) известно, что состояние блазара (активное или спокойное) оказывает сильное влияние на обнаружение спектральных линий и значения эквивалентной ширины этих линий. Так как эквивалентная ширина (EW) является широко используемым критерием при разделении блазаров на FSRQ и BL Lac типы (при EW < 5 Å блазар классифицируется как BL Lac), то измерение этого параметра в спокойном состоянии может более точно классифицировать объект. В работе [65] показано, что для блазара 4С+49.22, известного как FSRQ, EW меняется от 300 Å (в спокойном состоянии) до 13 Å (в состоянии вспышки). При исследовании переменных объектов важно помнить, что уровень переменности зависит от количества измерений [66, 67]. Редкие измерения больших выборок часто дают меньше информации при исследовании переменности, чем долговременный мониторинг нескольких объектов. Некоторые предположения о природе переменности были сделаны с использованием многолетних измерений одного-двух источников [64, 68]. Таким образом, многочастотные и долговременные наблюдения блазаров являются важной и неотъемлемой составляющей в изучении феномена АЯГ. С этой точки зрения многочастотный мониторинг большого числа объектов этого типа, осуществляемый на одном инструменте в течение продолжительного времени, является крайне важным.

Основной задачей исследователей блазаров на радиотелескопе РАТАН-600 является получение многочастотных измерений для изучения поведения различных типов этих объектов и оценки их параметров и характеристик в радиодиапазоне.

Исходя из всего вышеизложенного, мы составили каталог BL Lac-блазаров, наблюдающихся на радиотелескопе РАТАН-600. Этот интерактивный каталог может послужить полезным инструментом для всех астрономов, изучающих

блазары. Наш онлайн каталог, получивший название «BLcat» [69], опубликован на странице обсерватории САО РАН³.

2.3 Описание выборки

Выборка блазаров типа BL Lac содержит 300 объектов, выбранных из каталога Массаро Roma-BZCAT. Первые наблюдения объектов из этой выборки начались в 2006 году, тогда выборка составляла 108 блазаров, выбранных из списка объектов типа BL Lac и кандидатов в BL Lac из работы Ниеппола и др. [70], на то время это была одна из самых больших выборок BL Lac объектов — 398 объектов, 382 из которых отобраны из каталога Верон-Сетти и Верон [71] и 17 объектов взяты из литературы. В первоначальную выборку вошли блазары, имеющие недостаток наблюдательных данных в радиодиапазоне (такие как MS 0011.7+0837, MS 0317.0+1834, 1ES 0145+138, MS 2336.5+0517, RXS J0325.2+1515 и др.). В качестве исключения в исследуемую выборку добавлены объекты из работы [70] с подозрением на наличие чрезвычайно высокого значения максимума синхротронной компоненты ν_{peak}^s . В 2007 г. в список были добавлены еще 9 объектов.

Систематический мониторинг этой первичной выборки проводился в 2006–2008 годах, в рамках программ «Investigation of radio spectra and variability of GPS sources» и «Simultaneous spectra of the BL Lacertae Objects». В 2009–2011 годах наблюдательные данные неоднородны, так как лишь небольшая часть источников из выборки наблюдалась в этот период времени.

В 2012 году систематический мониторинг продолжился и в выборку добавлялись новые источники из каталога Массаро. Так, с 2012 года в выборку вошли все блазары из каталога Roma-BZCAT, доступные для наблюдений на РАТАН-600, с плотностью потока больше 400 мЯн, а с 2014 года добавились источники с плотностью потока больше 100 мЯн (на частоте 1.4 ГГц). Наблюдения блазаров проводились в рамках четырех программ: «Эволюция синхротронных радиоспектров объектов типа BL Lacertae», «Многоволновое исследование GPSисточников и кандидатов», «Bright Sources Monitoring during Planck Mission» и «Мониторинг переменности внегалактических источников». Общий список АЯГ, наблюдаемых по этим программам, составил порядка тысячи источников.

³http://www.sao.ru/blcat/

Число наблюдений объектов на двух комплексах радиометров, размещенных в приемных кабинах №1 и №2, превысило 62 тысячи (во время систематического мониторинга в 2012–2014 годах). Но некоторые источники из исследуемой выборки наблюдались лишь в одном цикле (таких объектов — 89), в то время как AO 0235+164 наблюдался в 28 циклах. Выборка также интересна тем, что, наряду с хорошо изученными яркими блазарами, содержит и слабые радиоисточники: минимальное значение плотности потока на частоте 1.4 ГГц 0.002 Ян (RXS J2209.3+1031), максимальное значение — 22.83 Ян (3С 84).

Список объектов и их параметры представлены в Таблице 10 (в Приложении А). Все объекты классифицированы как LSP, ISP и HSP на основе положения максимума синхротронной компоненты в SED [20]. Для LSP $\nu_{peak}^s < 10^{14.5}$ Гц, для ISP $10^{14.5} < \nu_{peak}^s < 10^{16.5}$ Гц, для HSP $\nu_{peak}^s > 10^{16.5}$ Гц. Подробности различных классификации блазаров описаны в пункте 1.3 данной диссертации. Значения пика синхротронной компоненты были рассчитаны при аппроксимации параболической функцией их SED, при использовании сервиса ASDC SED Builder Tool⁴. Список в Таблице 10 содержит 140 LSP, 99 ISP, 61 HSP. Из них 244 объекта являются RBL (BL Lac, обнаруженный в радиообзоре) и 54 – XBL (обнаруженный в рентгеновском обзоре) и 2 – OBL (отождествленный в оптическом обзоре). Большинство объектов RBL типа классифицируются как LSP, и наоборот, большинство XBL-объектов являются HSP блазарами. Обозначение колонок в Таблице 10 следующее:

Колонка 1 — имя объекта;

Кол. 2-3 — экваториальные координаты объекта RA и DEC (на эпоху 2000.0);

- Кол. 4 число эпох наблюдений;
- Кол. 5 красное смещение;

Кол. 6 — логарифм частоты максимума синхротронной компоненты ν_{peak}^{s} (Гц);

- Кол. 7 подкласс блазара из Roma-BZCAT;
- Кол. 8 тип АЯГ по классификации Roma-BZCAT;

Кол. 9 — тип обнаружения RBL, XBL или OBL.

Классификация блазаров (Кол. 8 в Таблице 10) основана на особенностях оптического спектра объектов. ВL Lac-блазары почти не имеют эмиссионных линий в оптическом спектре или имеют слабые линии. Блазары класса FSRQ имеют широкие эмиссионные линии, сильное нетепловое излучение по всему электро-

⁴http://tools.asdc.asi.it/SED
магнитному спектру, наличие доказательств релятивистских эффектов. Блазары неопределенного типа (в Таблице 10 обозначенные как blazar) — объекты с необычными характеристиками, показывающие активность, свойственную блазарам, но по разным причинам не отнесенные к конкретному классу. Большинство источников в нашей выборке (257 из 300) относятся к типу BL Lac или кандидатов в BL Lac. Часть объектов были исследованы в работе [72] как кандидаты в радиоисточники с максимумом в гигагерцовой области спектра — gigahertzpeaked-spectrum sources, GPS-источники [73,74] (это S4 0108+38, PKS 0420+022, 87GB 06200+3832, PKS 0837+035, PKS 1519-273, S5 1946+70). Каталог опубликован в центре астрономических данных в Страсбурге (CDS) [75].

Значения красного смещения (z) в большинстве случаев взяты из каталога Roma-BZCAT, в некоторых случаях из NED⁵. Красное смещение известно для 251 источника, что очень важно, учитывая, что типичный спектр BL Lac-блазара без линий. Значения красного смещения в выборке варьируются от 0.018 до 2.277, с медианной средней ~ 0.36. Из 49 блазаров с неизвестным z: 8 – HSP типа, 13 – ISP и 28 – LSP.

2.4 Рассчитанные параметры

При описании радиоспектров важной их характеристикой является **спектральный индекс**, определяемый по наклону касательной к радиоспектру, вычисляется по формуле:

$$\alpha = \frac{\log F_2}{\log F_1} / \frac{\log \nu_2}{\log \nu_1},\tag{2.1}$$

где F_1 плотность потока на частоте ν_1 и F_2 плотность потока на частоте ν_2 .

Для количественной оценки переменности широко используется индекс переменности [76], вычисляемый по формуле:

$$Var_{F} = \frac{(F_{i} - \sigma_{i})_{max} - (F_{i} + \sigma_{i})_{min}}{(F_{i} - \sigma_{i})_{max} + (F_{i} + \sigma_{i})_{min}},$$
(2.2)

где F_{max} и F_{min} максимальное и минимальное значения плотности потока за все время наблюдений; $\sigma_{F_{max}}$ и $\sigma_{F_{min}}$ соответствующие среднеквадратичные ошибки. Индекс переменности является количественной мерой переменности плотности

⁵http://ned.ipac.caltech.edu/

потока излучения и показывает, насколько амплитуда переменности пропорциональна минимальному значению потока.

2.5 Каталог блазаров, наблюдаемых на РАТАН-600 - BLcat

2.5.1 Организация каталога

BLcat состоит из списка объектов с их основными параметрами и наблюдательными данными РАТАН-600. Все данные, представленные в каталоге, доступны для экспортирования в различных форматах. Вид основной таблицы каталога представлен на Рисунке 2.5.

Entry number ■ select all	RATAN data	Set	Source name RA Dec name	Ra (J2000.0) 1 4	Dec (J2000.0) 1	Redshift 1	Rmag † J stat	Log v _{peak} † 1 stat	Flux density	SED class t	Blazar type 7 4 stat	Selected type	Reference
1 🗆	Data Explorer	16	000613-062336	00:06:13	-06:23:36	0.347	17.8	12.75	2.286	LSP	FSRQ	RBL	5
2 🗆	Data Explorer	7	001419+085404	00:14:19	08:54:04	0.162	15.8	16.74	0.119	HSP	Blazar~un.type	XBL	2
3 🗆	Data Explorer	3	001937+202145	00:19:37	20:21:45	-	19.4	13.08	0.817	LSP	BL~Lac	RBL	11
4 🗆	Data Explorer	16	002232+060805	00:22:32	06:08:05	-	18.9	13.19	0.442	LSP	BL~Lac	RBL	7

Рис. 2.5: Скриншот основной таблицы каталога BLcat (совместный результат автора, опубликован в работе [69])

В этой таблице содержится, кроме имени источника, также информация о числе наблюдений источника на РАТАН-600, экваториальные координаты, значение красного смещения, звездная величина (в R-фильтре), среднее значение плотности потока на частоте 4.8 ГГц, частота максимума синхротронной компоненты SED, различные классификации по типам блазаров (по методу селекции (XBL/OBL/RBL), по SED (HSP/ISP/LSP)). Если выбрать интересующий источник и нажать кнопку «Data Explorer», то в новом окне открываются все доступные измерения плотности потока для выбранного блазара. В том же окне появляется возможность ознакомиться с автоматически построенными радиоспектрами и многочастотными кривыми блеска (Рисунок 2.6). Пожалуй наиболее интересной функцией данного каталога является возможность экспортировать данные. Для этого нужно выбрать объекты и нажать кнопку «Export main Table and RATAN-600 data». После этого появится возможность выбрать формат загрузочного файла и виды данных, которые можно загрузить: основная таблица с параметрами, радиоизмерения РАТАН-600, а также автоматически посчитанные значения спектрального индекса и индекса переменности. Спектральные индексы считаются для каждого интервала частот, а индекс переменности на каждой частоте. Формулы, по которым производится подсчет этих радиопараметров, а также другая полезная информация содержатся в разделе «Help».

Рис. 2.6: Многочастотные радиоспектры и кривые блеска, представленные в каталоге, на примере лацертиды АО 0235+164. Представлены наблюдательные данные за 31 эпоху — с 2005.09 до 2014.03 (совместный результат автора, опубликован в работе [69])

2.5.2 Измерения частоты максимума синхротронной компоненты

Распределение частоты максимума синхротронной компоненты SED (ν_{peak}^s) для объектов из BLcat представлен на Рисунке 2.7. Значения ν_{peak}^s мы подсчитали, используя инструмент ASDC SED Builder Tool, где вписывали полином третьей степени в SED. Для некоторых источников имеются наблюдательные данные только на низких частотах (радиодиапазон), поэтому для таких объектов не удается построить надежную аппроксимацию и значение ν_{peak}^s может быть определено только приблизительно. В таких случаях обычно ν_{peak}^s занижено (см., например, источник MS 1133.7+1618). Новые наблюдательные данные из оптического, УФ и рентгеновского диапазонов помогут значительно улучшить точность определения ν_{peak}^s . На основе посчитанных значений мы определили класс блазара (HSP/ISP/LSP). В текущей версии каталога доминируют представители LSP класса блазаров (140 объектов с $\nu_{peak}^s < 10^{14.5}$ Гц), что объясняется их относительной «радиояркостью».

Рис. 2.7: Распределение частоты максимума синхротронной компоненты SED для объектов из каталога BLcat (совместный результат диссертанта, опубликован в работе [69])

2.6 Заключение

Долговременный многочастотный мониторинг блазаров, описанный в данной Главе, является актуальным исследованием объектов этого класса, с использованием возможностей радиотелескопа РАТАН-600: многочастотности, квазиодновременности наблюдений и возможности мониторинга большого списка объектов. Результаты вкратце описаны ниже.

1) С учетом параметров приемной аппаратуры и геометрических возможностей РАТАН-600, составлена выборка из более трех сотен лацертид с плотностью потока больше 100 мЯн на частоте 1.4 ГГц, на основе каталога блазаров Roma-BZCAT.

2) Проведены наблюдения на двух комплексах радиометров 300 объектов в период 2006–2014 гг. на частотах 21.7, 11.2, 7.7, 4.8, 2.3 и 1.1 ГГц (с 2010 года с участием автора).

3) Проведена обработка наблюдательного материала, получены многочастотные квазиодновременные радиоспектры 300 объектов.

4) Создан каталог представителей редкого подкласса АЯГ — лацертид, основанный на литературных данных и наблюдениях на РАТАН-600. Радиоспектры, значения плотностей потоков и кривые блеска блазаров представлены в каталоге BLcat; на конец 2014 года в нем содержится более 300 источников. BLcat может быть использован для статистического изучения радиосвойств блазаров, для исследования поведения различных подклассов этих объектов в радиодиа-пазоне. Отличительной особенностью представленных наблюдательных данных является использование одного инструмента для получения квазиодновременных многочастотных измерений. Измерения плотностей потоков представлены в удобном формате, доступен интерактивный просмотр и экспорт данных. Список блазаров периодически дополняется и обновляется как архивными, так и новыми наблюдательными данными. Результаты этой Главы изложены в работе [69], выполненной в соавторстве с диссертантом.

Глава 3

Изучение связи излучения в джете и аккреционном диске блазаров с использованием многочастотных данных РАТАН-600

3.1 Введение и актуальность

Блазары — относительно редкий подкласс активных галактических ядер, характеризующийся наличием релятивистского джета, расположенного близко к лучу зрения наблюдателя ($\theta < 20^{\circ}$) [20], поэтому считается, что релятивистские эффекты играют определяющую роль в наблюдаемых свойствах блазаров [17]. Объекты этого класса показывают переменность блеска на различных длинах волн и временных масштабах от часов до десятков лет, обнаруживают высокую и переменную поляризацию излучения [20, 61, 77, 78].

Вопрос связи между излучением в джете и аккреционном диске является одним из важных и до конца не изученных в исследовании блазаров и АЯГ. В современных теоретических моделях предполагается, что джет образуется вблизи центральной черной дыры, усиливаясь за счет её вращения, или происходит из аккреционного диска [12, 79]. В обоих случаях подразумевается существова-

ние связи между светимостью в джете и темпом аккреции вещества на черную дыру (ЧД). Эффективным методом исследования этой связи является изучение соотношения светимостей в различных диапазонах частот и светимости в области образования широких линий (BLR), которая находится вблизи центрального объекта и ионизируется его излучением (см., например, работы [79-83]). Cao и Jiang [81] обнаружили значительную корреляцию между излучением в радиодиапазоне и в BLR для 198 блазаров. В работе [84] авторы рассмотрели выборку из 50 радиогромких квазаров, также продемонстрировав заметную корреляцию между потоками в различных диапазонах и в BLR, сделав вывод о существовании тесной связи релятивистского джета с аккрецией вещества на ЧД. Maraschi и Tavecchio [79] также обнаружили корреляцию между светимостью джета и светимостью ядра, вызванной аккрецией вещества для небольшой выборки блазаров (11 FSRQ и 5 BL Lac). Согласно этой работе, джеты блазаров подпитываются энергией быстро вращающейся ЧД посредством магнитного поля. Предполагается, что у FSRQ-блазаров масса ЧД $\sim 10^8 - 10^9 M_{\odot}$ и высокий темп аккреции. У BL Lac-блазаров светимость джета сильнее чем светимость диска — это может быть объяснено тем, что в них темп аккреции значительно меньше, чем у FSRQ, и аккреционный диск светит незначительно, при этом масса центрального объекта может быть как у FSRQ [79].

В настоящей работе рассмотрена корреляция между излучением в BLR и в других диапазонах частот (от радио до рентгена) для выборки из 37 блазаров. Для этих источников известны потоки в широком диапазоне частот. Для радиодиапазона использовались квазиодновременные измерения на радиотелескопе РАТАН-600. Чтобы понять, как влияет состояние объекта на корреляцию потоков в разных диапазонах мы выбрали для каждого объекта два состояния: максимального и минимального значения плотности потока, полученного на РАТАН-600 в указанный период времени (2005–2014 гг.). Наиболее комплексным подходом для исследования взаимосвязи излучения в джете и аккреционном диске является анализ потоков от BLR и широком диапазоне частот. Данная работа отличается от выполненных ранее (например, [84]) тем, что при анализе используются две декады радиодиапазона, измерения в которых выполнены одновременно, а также сравнивается корреляция в двух выделенных состояниях (активном и спокойном, в радиодиапазоне).

44

3.2 Теоретические предсказания соотношения потоков от BLR и от джета

Не до конца ясно, что является основным переносчиком энергии в джете: протоны и электроны или вектор Поинтинга? Энергии одних лишь электронов (позитронов) недостаточно для объяснения наблюдаемых энергий вспышек и светимостей «радиоушей». Поэтому в джетах, предположительно, должны доминировать протоны или присутствовать сильное магнитное поле. Также возможен механизм генерации джета, при котором в его основании доминирует вектор Поинтинга, а на больших (килопарсековых) расстояниях от основания — вещество [13]. Согласно работе [85], если возникновение джета можно приписать потоку Поинтинга, то светимость может быть записана в виде:

$$L_{BZ} \sim 6 \times 10^{20} (\frac{a}{m})^2 (\frac{M_{BH}}{M_{\odot}})^2 B^2,$$
 (3.1)

где: L_{BZ} — светимость в эрг сек⁻¹, M_{BH} — масса ЧД, M_{\odot} — масса солнца, B — величина магнитной индукции в Гс, $\frac{a}{m}$ — угловой момент (~ 1 для наиболее быстро вращающихся ЧД). Если опустить промежуточные выкладки, которые можно посмотреть в работе [85], можно записать максимальную светимость джета как:

$$L_{jet} \sim \frac{L_{disc}}{\eta} \sim \frac{dM}{dt}c^2,$$
 (3.2)

где: $\frac{dM}{dt}$ — темп аккреции, L_{jet} — светимость джета, η — коэффициент, показывающий какая минимальная часть энергии джета (P_{jet}) должна высветится, чтобы воспроизвести наблюдаемую светимость джета (L_{jet}):

$$\eta = \frac{L_{jet}}{P_{jet}}.$$
(3.3)

Из работы [79], где обсуждается взаимосвязь излучения различных областей блазаров, известно следующее соотношение:

$$L_{BLR} = \tau L_{disc} = \tau \eta L_{jet}.$$
(3.4)

Здесь τ — некий коэффициент, который показывает какое количество энергии диска переизлучается в BLR. В итоге можно записать:

$$log(L_{BLR}) = log(L_{jet}) + log(\eta) + const.$$
(3.5)

Согласно этой формуле, коэффициент, характеризующий линейную регрессию $log(L_{BLR})$ – $log(L_{jet})$, должен быть равен 1, а коэффициент η , характеризующий «эффективность» джета, ответственен за отклонение от линейной зависимости.

3.3 Описание выборки и наблюдательных данных

При составлении выборки мы руководствовались следующим критерием — необходимы данные из как можно большего диапазона частот для как можно большего числа блазаров. На сегодняшний день известны несколько крупных обзоров блазаров (в радио- и рентгеновском диапазонах), но они проводились неодновременно и по большинству источников данного класса практически невозможно найти наблюдательные данные во всех диапазонах, тем более проведенных хотя бы в один и тот же год. Для 37 объектов, представленных в работе, известны потоки в широком диапазоне частот, доступны квазиодновременные радионаблюдения на РАТАН-600. Наблюдения неоднородны, проведены в различные эпохи — это, безусловно, влияет на результат, блазары являются сильно переменными объектами во всех диапазонах.

В выборке представлены два различных типа объектов, относящихся к классу блазаров. У объектов типа FSRQ красное смещение заметно выше, чем у BL Lac, согласно данным каталога [31]. Для нашей выборки медианное значение красного смещения составило 0.67 для BL Lac и 0.92 для FSRQ-блазаров.

Наблюдения на РАТАН-600

Наблюдения объектов проводились на радиотелескопе РАТАН-600 в период 2005–2014 гг. в рамках наблюдательных программ по многочастотному мониторингу ярких представителей АЯГ. Использовался режим меридианного инструмента — прохождение объектов через неподвижную диаграмму направленности антенны в верхней и нижней кульминациях северного и южного секторов [52]. Наблюдения проводились с использованием штатного комплекса радиометров на частотах 1.1, 2.3, 4.8, 7.7, 11.2 и 21.7 ГГц. Каждый объект наблюдался от 5 до 15

46

раз за один наблюдательный цикл. Систематический мониторинг объектов выборки проводился в 2009 г.; в 2005, 2007 и 2010–2012 гг. наблюдались отдельные объекты. Все представленные в данной работе измерения блазаров, проведенные на РАТАН-600, опубликованы в ряде работ [86–90]. Измерения некоторых объектов BL Lacertae типа также доступны в онлайн-каталоге BLcat на странице обсерватории САО РАН¹ [69].

Методика обработки и калибровки измерений описана в пункте 2.1 диссертации, также в работах [88–90]. Среднеквадратичная ошибка измерения спектральной плотности потока исследуемых объектов составила 5–20% на 11.2, 7.7 и 4.8 ГГц, 10–25% на 1.1, 2.3 и 21.7 ГГц.

Использованные в работе экспериментальные данные РАТАН-600 представлены в Таблице 3.1, где: (1) — имя объекта; (2) — тип блазара по классификации [31]; (3) — состояние в радиодиапазоне: f — активное, 1 — спокойное; (4) — эпоха наблюдений на РАТАН-600; (5)–(10) — значения плотностей потоков и их стандартные ошибки на частотах 1.1, 2.3, 4.8, 7.7, 11.2 и 21.7 ГГц в Ян. Все объекты выборки достаточно яркие — плотность потока на 4.8 ГГц от ~ 1 Ян и больше.

Таблица 3.1: Значения плотностей потоков исследуемых блазаров, измеренных на РАТАН-600 в разные наблюдательные эпохи. Данные опубликованы в ряде работ [86–90]

Имя (IAU)	Тип	s	Эпоха	<i>F</i> , Ян					
				21.7 GHz	11.2 GHz	7.7 GHz	4.8 GHz	2.3 GHz	1.1 GHz
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
J0217+7349	FSRQ	1	2011.02.25	2.51 ± 0.08	3.51 ± 0.09	3.73 ± 0.17	3.64 ± 0.10	-	2.84 ± 0.21
		f	2012.11.16	3.18 ± 0.18	3.52 ± 0.09	3.71 ± 0.09	3.62 ± 0.12	-	-
AO 0235+16	BL Lac	1	2014.01.23	0.65 ± 0.01	0.70 ± 0.04	0.67 ± 0.04	0.78 ± 0.08	-	-
		f	2008.12.25	5.73 ± 0.07	6.35 ± 0.33	6.36 ± 0.24	5.48 ± 0.49	2.69 ± 0.17	1.35 ± 0.10
B0420-0127	FSRQ	1	2009.05.01	5.10 ± 0.48	4.75 ± 0.69	4.17 ± 0.61	3.22 ± 0.23	2.09 ± 0.21	-
		f	2010.01.22	7.89 ± 0.06	6.46 ± 0.13	5.90 ± 0.14	4.22 ± 0.08	2.53 ± 0.11	-
J0646+4451	FSRQ	1	2009.04.27	2.87 ± 0.09	3.96 ± 0.11	4.31 ± 0.15	3.05 ± 0.13	1.55 ± 0.31	-
		f	2009.11.16	2.87 ± 0.04	4.06 ± 0.11	4.50 ± 0.17	2.72 ± 0.12	1.46 ± 0.07	-
J0739+0137	FSRQ	f	2009.04.23	1.32 ± 0.09	1.43 ± 0.04	1.47 ± 0.06	1.59 ± 0.06	1.57 ± 0.26	-
		1	2010.10.27	0.81 ± 0.05	0.79 ± 0.05	0.84 ± 0.03	0.80 ± 0.03	_	1.49 ± 0.19
J0808+4950	FSRQ	f	2009.05.04	0.53 ± 0.03	0.63 ± 0.03	0.58 ± 0.02	1.26 ± 0.06	1.16 ± 0.21	-
		1	2011.04.07	0.61 ± 0.01	0.45 ± 0.03	0.32 ± 0.01	0.33 ± 0.09	_	-
B0814+4232	BL Lac	1	2014.01.23	0.67 ± 0.06	0.81 ± 0.05	0.96 ± 0.06	1.04 ± 0.02	-	-
		f	2011.03.17	1.56 ± 0.07	2.04 ± 0.09	1.97 ± 0.08	1.75 ± 0.08	_	-
4C 22.21	BL Lac	f	2012.12.25	0.59 ± 0.10	1.04 ± 0.05	1.21 ± 0.06	1.49 ± 0.19	-	-
		1	2014.01.05	0.81 ± 0.08	0.99 ± 0.06	1.16 ± 0.08	1.36 ± 0.05	-	-
4C 71.07	FSRQ	1	2010.01.19	2.51 ± 0.09	1.97 ± 0.12	1.79 ± 0.06	2.05 ± 0.10	2.37 ± 0.45	-
		f	2012.11.11	2.40 ± 0.61	3.17 ± 0.13	3.28 ± 0.11	2.74 ± 0.28	_	-
J0854+2006	BL Lac	1	2014.03.31	2.40 ± 0.18	2.41 ± 0.12	2.72 ± 0.14	2.72 ± 0.11	-	-

¹http://www.sao.ru/blcat/

Таблица 3.1:	продолжение
--------------	-------------

Имя (IAU)	Тип	s	Эпоха	<i>F</i> . Ян					
		-		21.7 GHz	11.2 GHz	7.7 GHz	4.8 GHz	2.3 GHz	1.1 GHz
		f	2011 04 15	7.82 ± 0.09	6.85 ± 0.24	5.64 ± 0.11	4.49 ± 0.09		
3C 216	Blaz un t	1	2009 04 22	0.88 ± 0.09	1.32 ± 0.05	1.58 ± 0.08	1.74 ± 0.88	2.89 ± 0.55	_
50 210	Diuz.uii.t.	f	2013 03 07	0.98 ± 0.05 0.98 ± 0.15	1.32 ± 0.00 1.37 ± 0.18	1.60 ± 0.00 1.64 ± 0.21	1.92 ± 0.00	2.00 ± 0.00	_
AC 30 25	FSPO	1	2010.09.16	7.06 ± 1.50	1.67 ± 0.10 11.62 ± 0.77	1.04 ± 0.21 12.31 ± 0.30	1.32 ± 0.13 10.76 ± 0.27	5.00 ± 0.60	2.60 ± 0.08
40 39.23	TSKQ	f	2010.09.10	1.00 ± 1.00	11.02 ± 0.77 12.21 ± 0.32	12.31 ± 0.30 12.05 ± 0.38	10.70 ± 0.27 11.37 ± 0.47	5.09 ± 0.09	2.00 ± 0.98
40.24	ESDO	1	2011.05.25	9.03 ± 0.20	12.21 ± 0.32	12.00 ± 0.06	11.37 ± 0.47	1.00 \ 0.00	_
40.24	rskų	I £	2009.11.13	0.47 ± 0.01	1.18 ± 0.04	1.32 ± 0.00	1.33 ± 0.00	1.90 ± 0.09	—
D0054+(59	DLL	I c	2010.03.04	1.14 ± 0.10	1.09 ± 0.03	1.90 ± 0.07	1.82 ± 0.07	1.03 ± 0.08	—
B0954+658	BL Lac	I	2010.01.20	1.68 ± 0.06	1.85 ± 0.08	1.82 ± 0.09	1.51 ± 0.10	1.44 ± 0.02	-
10.01.00	D1	I C	2012.10.31	1.35 ± 0.14	1.14 ± 0.05	0.91 ± 0.04	0.74 ± 0.09	-	-
4C 01.28	Blaz.un.t.	Ť	2009.04.25	4.51 ± 0.15	4.08 ± 0.10	3.56 ± 0.10	3.19 ± 0.08	2.98 ± 0.32	_
		I	2013.03.22	2.38 ± 0.44	2.48 ± 0.50	2.57 ± 0.41	2.71 ± 0.34	-	—
J1147-3812	BL Lac		2010.01.18	0.95 ± 0.07	1.02 ± 0.04	0.97 ± 0.09	0.96 ± 0.13	0.90 ± 0.14	-
4C 49.22	FSRQ	f	2009.04.30	0.10 ± 0.07	1.06 ± 0.03	1.07 ± 0.04	1.36 ± 0.05	1.64 ± 0.22	-
		1	2010.05.21	0.79 ± 0.27	1.01 ± 0.09	0.96 ± 0.09	1.11 ± 0.07	1.12 ± 0.11	1.47 ± 0.46
3C 273	FSRQ	1	2009.05.04	21.62 ± 1.77	28.47 ± 0.66	32.85 ± 1.61	39.02 ± 1.01	44.78 ± 3.99	-
		f	2009.11.21	20.57 ± 0.25	28.69 ± 0.75	34.89 ± 1.19	41.79 ± 0.95	48.51 ± 1.58	-
3C 279	FSRQ	1	2010.01.19	11.40 ± 0.08	8.13 ± 0.34	8.23 ± 0.21	7.93 ± 0.19	7.84 ± 0.20	-
		f	2011.12.08	27.37 ± 0.93	19.10 ± 0.38	14.33 ± 0.28	10.83 ± 0.18	-	-
J1337-1257	FSRQ	f	2009.05.04	7.03 ± 0.18	6.42 ± 0.17	5.42 ± 0.20	4.70 ± 0.19	2.92 ± 0.27	-
		1	2010.07.29	4.47 ± 0.95	4.17 ± 0.18	4.09 ± 0.25	3.59 ± 0.18	3.41 ± 0.36	2.32 ± 0.33
B1445+101	FSRQ		2010.07.31	0.39 ± 0.98	0.47 ± 0.11	0.63 ± 0.14	0.95 ± 0.16	1.69 ± 0.31	1.91 ± 0.19
J1512-0906	FSRQ	1	2009.04.25	2.48 ± 0.20	2.16 ± 0.24	1.79 ± 0.07	1.83 ± 0.05	1.84 ± 0.28	_
		f	2009.11.15	2.46 ± 0.03	1.96 ± 0.22	2.07 ± 0.09	2.23 ± 0.08	2.31 ± 0.15	_
4C 14.60	BL Lac	f	2008.05.06	1.36 ± 0.03	1.50 ± 0.04	1.57 ± 0.05	1.57 ± 0.04	1.52 ± 0.06	1.63 ± 0.09
		1	2011.03.26	0.59 ± 0.04	0.76 ± 0.03	0.89 ± 0.02	0.97 ± 0.03	_	_
J1549+0237	FSRO	f	2009.04.28	1.48 ± 0.09	1.56 ± 0.04	1.63 ± 0.06	1.93 ± 0.04	1.83 ± 0.18	_
		1	2009.11.14	1.41 ± 0.02	1.66 ± 0.04	1.73 ± 0.08	1.86 ± 0.05	1.53 ± 0.09	_
J1613+3412	FSRO	f	2009.04.25	1.89 ± 0.09	3.11 ± 0.11	3.45 ± 0.15	3.84 ± 0.15	4.58 ± 0.68	_
		1	2009 11 15	1.77 ± 0.03	2.67 ± 0.09	3.17 ± 0.19	3.26 ± 0.15	4.18 ± 0.19	_
4C 38 41	FSRO	1	2009.04.27	2.29 ± 0.12	2.89 ± 0.09	2.95 ± 0.12	2.94 ± 0.11	2.47 ± 0.14	_
10 50.11	Tong	f	2003.01.27	5.61 ± 0.84	4.75 ± 0.62	4.36 ± 0.12	2.01 ± 0.11 3.56 ± 0.36	2.11 ± 0.11	_
3C 345	FSRO	1	2019.12.27	6.71 ± 0.04	7.25 ± 0.02	4.50 ± 0.01 6.54 ± 0.27	5.90 ± 0.30 5.90 ± 0.24	6.99 ± 0.65	_
30 343	TSKQ	r f	2009.04.27	0.71 ± 0.24 7.01 ± 0.10	7.23 ± 0.23 7.00 ± 0.26	0.54 ± 0.27 7 70 ± 0.22	5.30 ± 0.24 5.72 ± 0.25	0.33 ± 0.03 7 15 \pm 0.21	
9C 1902±79	DI Loo	1	2009.11.14	1.01 ± 0.10 1.75 ± 0.25	1.99 ± 0.20 1.80 ± 0.17	1.19 ± 0.33 1.88 ± 0.12	5.72 ± 0.23 2.05 ± 0.10	1.13 ± 0.31 1.08 ± 0.12	-2.01 ± 0.16
oc 1005+78	BL Lac	I £	2003.04.19	1.75 ± 0.35	1.69 ± 0.17	1.00 ± 0.13	2.03 ± 0.10	1.90 ± 0.12	2.01 ± 0.10
10 56 27	DIIaa	I f	2011.02.22	2.17 ± 0.14	2.97 ± 0.12	2.75 ± 0.15	2.41 ± 0.09	_	1.99 ± 0.10
40 30.27	BL Lac	1	2012.10.26	1.01 ± 0.08	1.05 ± 0.04	1.31 ± 0.04	1.33 ± 0.00	_	—
10 72 10	FGDO	I C	2014.02.06	1.10 ± 0.11	1.18 ± 0.08	1.18 ± 0.08	1.12 ± 0.07	-	-
4C 73.18	FSRQ	t	2010.01.24	5.06 ± 0.17	4.79 ± 0.16	4.15 ± 0.06	3.68 ± 0.16	3.33 ± 0.28	-
		l	2012.11.27	3.32 ± 0.13	3.25 ± 0.08	3.22 ± 0.08	3.18 ± 0.10	-	-
B2126-15	FSRQ	f	2006.07.25	1.09 ± 0.25	1.48 ± 0.05	1.49 ± 0.04	1.46 ± 0.04	0.87 ± 0.07	0.37 ± 0.07
		1	2010.09.17	0.57 ± 0.12	0.89 ± 0.03	1.31 ± 0.05	1.47 ± 0.03	1.25 ± 0.18	1.15 ± 0.19
B2134+0028	FSRQ	f	2010.05.21	6.25 ± 0.49	7.89 ± 0.24	9.04 ± 0.47	9.37 ± 0.29	6.96 ± 1.24	3.12 ± 1.01
		1	2011.12.05	5.60 ± 0.39	7.52 ± 0.16	8.07 ± 0.17	9.00 ± 0.13	-	-
B2155-152	FSRQ		2010.05.17	1.58 ± 0.42	2.03 ± 0.06	2.18 ± 0.10	2.37 ± 0.09	2.46 ± 0.16	2.94 ± 0.21
3C 446	FSRQ	f	2010.05.23	6.58 ± 0.11	7.68 ± 0.23	8.50 ± 0.21	8.19 ± 0.20	5.12 ± 0.33	8.85 ± 0.66
		1	2007.06.03	3.92 ± 0.06	3.95 ± 0.12	4.16 ± 0.13	4.16 ± 0.12	3.98 ± 0.16	-
4C 11.69	FSRQ	f	2009.10.23	4.24 ± 0.06	5.32 ± 0.09	5.84 ± 0.13	5.39 ± 0.12	5.63 ± 0.56	-
		1	2011.12.05	1.79 ± 0.11	2.54 ± 0.06	3.04 ± 0.06	4.20 ± 0.14	-	-
B2240-260	BL Lac	f	2012.03.18	0.61 ± 0.16	0.57 ± 0.03	0.69 ± 0.04	0.91 ± 0.03	-	-
		1	2014.01.23	0.59 ± 0.06	0.51 ± 0.03	0.61 ± 0.03	0.69 ± 0.01	-	-
3C 454.3	FSRQ	f	2010.07.22	26.84 ± 2.07	20.46 ± 0.52	16.08 ± 0.55	11.57 ± 0.38	11.39 ± 0.28	15.48 ± 0.54
		1	2007.06.05	4.41 ± 0.07	6.44 ± 0.23	7.92 ± 0.39	9.37 ± 0.56	11.66 ± 0.89	16.31 ± 0.82

Литературные данные

Список исследуемых объектов основан на каталоге блазаров, представленном

в работе [91]. Из этой работы взяты потоки в рентгеновском (1 кэВ) и в оптическом (5500 Å) диапазонах. Авторы собрали наиболее полную информацию для всех известных блазаров в рентгеновском диапазоне. В диапазоне 0.1–2 кэВ использованы данные из обзора ROSAT, для 2–10 кэВ из EXOSAT, ASCA и ВерроSAX, причем в каталог, анонсированный в этой работе эти данные попали из различных источников. Использованные нами в работе потоки в рентгеновском и оптическом диапазонах взяты авторами из следующих работ: [92–101], а также из базы данных NED.

Значения потоков из области BLR взяты из работы [81]. В работе [81] рассматривается корреляция между излучением на частоте 5 ГГц (используются данные различных радиообзоров) и суммарным излучением в линиях. Исследовались более трехсот объектов, оптически отождествленных как квазары и лацертиды, а не как галактики. Для этой выборки искали информацию о спектре. Предпочтение отдавалось наиболее поздним наблюдательным данным. После таково рода отбора осталось 184 квазара и 14 BL Lac. Для различных источников наблюдались спектры с разными линиями, с разными красными смещениями. Поэтому для корректного сравнения потока в линиях, правильнее будет посчитать интегральный поток из этой области. Для подсчета полного потока в линиях применялся метод, описанный в [80]: (1) определяются линии, доминирующие в спектре, (2) устанавливается, как соотносятся потоки между ними, (3) используя соотношения для этих линий из работы [102], методом экстраполяции, определяются потоки в других линиях. О том, какие линии и из каких источников использовались для определения потока в BLR можно узнать из таблицы в этой работе [81].

Список объектов и использованные в настоящей работе литературные данные представлены в Таблице 3.2, где: (1) — имя объекта; (2)–(3) — экваториальные координаты на эпоху 2000.0; (4) — красное смещение z; (5) — тип блазара по классификации [31]; (6)–(7) — логарифм потока на частотах 1.4 ГГц ($\nu F_{1.4GHz}$) и 143 ГГц (νF_{143GHz}); (8) — логарифм потока на длине волны 5500 Å (νF_{5500});(9) логарифм потока в рентгеновском диапазоне (νF_{1keV}); (10) — логарифм потока из области образования широких линий (BLR) (νF_{BLR}). Значения логарифма потока на всех частотах даны в единицах эрг см⁻² с⁻¹. Таблица 3.2: Список исследуемых блазаров и их параметры. Данные взяты из следующих работ: [81,91–101], а также из базы данных NED

Имя (IAU)	RA(2000.0)	DEC(2000.0)	z	$\nu F_{1.4GHz}$	νF_{143GHz}	νF_{5500}	νF_{1keV}	νF_{BLR}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
J0217+7349	02:17:30	+73:49:32	2.370	-13.50	-11.82	-11.61	-12.20	-13.69
AO 0235+16	02:38:38	+16:36:59	0.940	-13.57	-11.75	-10.85	-11.44	-13.90
B0420-0127	04:23:15	-01:20:33	0.915	-13.42	-11.12	-11.73	-12.05	-12.70
J0646+4451	06:46:32	+44:51:16	3.400	-14.20	-11.85	-12.09	-12.54	-12.91
J0739+0137	07:39:18	+01:37:04	0.191	-13.56	-11.74	-11.14	-11.44	-11.80
J0808+4950	08:08:39	+49:50:36	1.433	-13.81	-	-11.67	-12.39	-12.71
B0814+4232	08:18:16	+42:22:45	0.258	-13.82	-11.87	-12.09	-12.92	-14.50
4C 22.21	08:23:24	+22:23:03	0.951	-13.50	-12.26	-12.48	-12.92	-14.58
4C 71.07	08:41:24	+70:53:42	2.172	-13.27	-11.52	-11.24	-11.26	-12.12
J0854+2006	08:54:48	+20:06:31	0.306	-13.67	-11.11	-10.84	-11.27	-12.88
3C 216	09:09:33	+42:53:46	0.669	-13.23	-12.16	-12.06	-12.57	-13.95
4C 39.25	09:27:03	+39:02:21	0.695	-13.39	-11.29	-11.63	-11.67	-11.55
4C 40.24	09:48:55	+40:39:45	1.252	-13.65	-12.01	-11.68	-12.57	-12.37
B0954+658	09:58:47	+65:33:54	0.367	-13.99	-11.90	-11.03	-12.41	-14.04
4C 01.28	10:58:29	+01:33:59	0.888	-13.35	-11.38	-11.66	-12.29	-13.05
J1147-3812	11:47:01	-38:12:11	1.048	-13.60	-11.81	-11.36	-12.00	-13.39
4C 49.22	11:53:24	+49:31:09	0.334	-13.66	-11.78	-11.51	-11.82	-12.18
3C 273	12:29:06	+02:03:09	0.158	-12.11	-10.59	-9.82	-10.31	-10.27
3C 279	12:56:11	-05:47:22	0.536	-12.87	-10.86	-11.04	-11.44	-12.42
J1337-1257	13:37:39	-12:57:24	0.539	-13.43	-11.40	-11.48	-11.96	-12.88
B1445+101	14:45:16	+09:58:36	3.530	-13.47	-	-11.82	-12.54	-13.13
J1512-0906	15:12:50	-09:06:00	0.361	-13.42	-11.63	-11.23	-11.70	-12.00
4C 14.60	15:40:49	+14:47:46	0.605	-13.71	-	-11.62	-12.17	-14.07
J1549+0237	15:46:58	+02:46:05	1.450	-13.93	-11.79	-11.90	-11.69	-12.10
J1613+3412	16:13:41	+34:12:48	1.400	-13.25	-12.09	-11.72	-12.24	-12.17
4C 38.41	16:35:15	+38:08:04	1.814	-13.42	-11.42	-11.90	-11.99	-12.52
3C 345	16:42:58	+39:48:37	0.594	-13.00	-11.24	-11.31	-11.62	-11.69
8C 1803+78	18:00:45	+78:28:04	0.684	-13.51	-11.64	-11.48	-12.20	-12.75
4C 56.27	18:24:07	+56:51:01	0.664	-13.70	-11.85	-12.01	-12.00	-13.96
4C 73.18	19:27:48	+73:58:01	0.360	-13.26	-11.46	-11.22	-11.45	-11.29
B2126-15	21:29:12	-15:38:41	3.268	-14.08	-	-11.50	-11.68	-12.25
B2134+0028	21:36:38	+00:41:54	1.936	-13.31	-11.85	-11.41	-12.20	-12.13
B2155-152	21:58:06	-15:01:09	0.672	-13.37	-11.94	-11.64	-12.27	-13.59
3C 446	22:25:47	-04:57:01	1.404	-12.98	-11.44	-11.25	-11.45	-12.46
4C 11.69	22:32:36	+11:43:51	1.037	-13.00	-11.55	-11.42	-11.75	-11.87
B2240-260	22:43:26	-25:44:30	0.774	-13.81	-12.27	-11.85	-12.77	-13.92
3C 454.3	22:53:57	+16:08:53	0.859	-12.75	-10.40	-11.25	-11.48	-11.88

Особенности некоторых источников

На частоте 1.1 ГГц измерений недостаточно для большинства объектов, а на частоте 2.3 ГГц из блазаров типа BL Lac представлено несколько источников. Такая статистически ограниченная выборка недостаточна для корректного проведения анализа корреляции данных. Поэтому данные диапазоны не участвуют в дальнейшем анализе.

По классификации каталога Roma-BZCAT [31], который на сегодняшний день является наиболее полным каталогом блазаров, из 37 блазаров нашей выборки 25 являются FSRQ типа, 10 — BL Lac и 2 — блазары неопределенного типа (Blazars of uncertain type). Два источника, для которых не определен тип — это 3C 216 и 4C 01.28. Согласно информации, доступной в базе данных NED и используя веб-инструмент ASDC SED Builder Tool²: 3C 216 это LSP блазар, обладающий низкочастотным максимумом синхротронного излучения — log v_{peak}^s = 13.5, с сильной оптической поляризацией [28]; 4C 01.28 также LSP с log v_{peak}^s = 12.9, с сильной оптической поляризацией [28], в работе [63] упоминается как BL Lac, но в работе [103] как FSRQ. Так как нет единого мнения к какому подклассу блазаров отнести эти объекты, из дальнейшего анализа они исключены.

3.4 Анализ корреляции потока в BLR и широком диапазоне частот

Результаты сопоставления отношения логарифма потоков в BLR и различных диапазонах частот представлены на Рисунках 3.1–3.3. На Рисунке 3.1 используются радиоданные для блазаров, находившихся в активном состоянии в период наблюдений на РАТАН-600. На Рисунке 3.2 — для блазаров, находившихся в менее активном состоянии.

На графиках также показана аппроксимация данных для различных типов блазаров: штрихованной линией показана линейная регрессия для FSRQблазаров, а сплошной линией — для объектов BL Lac типа. В Таблицах 3.3 и 3.4 приведены параметры линейной регрессии для FSRQ и BL Lac-объектов соответственно. Также в этих таблицах приведены коэффициенты корреляции Пирсона (r) и уровень его значимости p.

Для FSRQ-объектов наибольшая корреляция потока в BLR (F_{BLR}) наблюдается с потоком в рентгеновском диапазоне (F_{1keV}): r = +0.79, p = 0.001. На всех радиочастотах корреляция примерно одного порядка — в среднем r = 0.46, причем не зависит от состояния (активного или спокойного) объектов.

Для BL Lac-объектов наибольшая корреляция наблюдается в миллиметровом диапазоне (F_{143GHz}): r = +0.73 (p = 0.03) и в активном состоянии на частоте 21.7 ГГц ($F_{21.7GHz}$): r = +0.74 (p = 0.02). Для BL Lac можно говорить о вероятном

²http://tools.asdc.asi.it/SED

наличии связи, так как уровень значимости *p* хуже 0.05 на некоторых частотах (см. Таблицу 3.4).

Интересно, что в отличие от FSRQ-блазаров, для BL Lac-объектов корреляция между активным и спокойным состояниями значительно различается. Это связано с количеством объектов в выборках. Плотность потока значительно изменяется в 3–4 раза для 2–5 объектов из каждой подвыборки блазаров (FSRQ и BL Lac). В остальных случаях разница между активным и спокойным состоянием не так значительна - амплитуда переменности. По нашей выборке видно, что плотность потока изменяется значительно у $\sim 10-15\%$ FSRQ блазаров и у $\sim 40\%$ BL Lac блазаров.

Коэффициент, характеризующий линейную регрессию (a в Таблицах 3.3 и 3.4) в случае FSRQ-блазаров, для большинства диапазонов (кроме $F_{21.7GHz}$ и $F_{4.8GHz}$) близок к 1 (см. Таблицу 3.3). Для BL Lac-объектов этот коэффициент варьируется от 0.67 до 2.15 в радиодиапазоне.

При рассмотрении исходных данных заметно, что поток в BLR у BL Lac в среднем на порядок меньше, чем у FSRQ, во всех диапазонах. Это обычно объясняется тем, что у FSRQ-блазаров вещества в области образования линий больше, чем у BL Lac. В пользу этой версии говорит то, что у FSRQ-объектов в спектре, как правило, наблюдается большой избыток в синей области спектра (big blue bump), а в спектре у BL Lac — не наблюдается. Этот избыток, предположительно, возникает из-за теплового излучения оптически толстого аккреционного диска [7].

3.5 Влияние переменности на результат корреляции

В блазарах наблюдается сильная переменность излучения на разных масштабах времени. В настоящей выборке у шести объектов наблюдается переменность спектральной плотности потока (индекс переменности) в десятки процентов на четырех частотах РАТАН-600. Три из них — блазары FSRQ типа (J0739+0137, 3C 446, 3C 454.3) и три — BL Lac типа (AO 0235+16, J0854+2006, 4C 14.60).

Для оценки влияния переменности излучения в радиодиапазоне мы использовали максимальные и минимальные значения плотностей потоков, полученных на РАТАН-600. В Таблицах 3.3 и 3.4 представлены коэффициенты корреляции Пирсона потока в BLR и в радиодиапазоне для этих двух состояний. Видно, что в активном состоянии особенных различий в коэффициентах корреляции между двумя подклассами блазаров не наблюдается. Но в спокойном состоянии коэффициент корреляции у BL Lac-блазаров заметно возрастает (в среднем с 0.4 до 0.7). Сильная переменность всего нескольких источников оказала значительное влияние на корреляцию. Таким образом, корреляция, безусловно, существует, но на неё может повлиять малое число объектов в выборке.

Таблица 3.3: Параметры линейной регрессии (Y = aX + b) для блазаров типа FSRQ, где r и p — коэффициент корреляции Пирсона и уровень его значимости. Совместный результат автора из работы [104]

X	Y	a	b	r	p		
$\log(\nu F_{1.4GHz})$	$\log(F_{BLR})$	$+0.86 \pm 0.29$	-0.84 ± 3.88	+0.52	0.007		
$\log(\nu F_{143GHz})$	$\log(F_{BLR})$	$+0.77 \pm 0.33$	-3.30 ± 3.76	+0.47	0.028		
$\log(\nu F_{5500})$	$\log(F_{BLR})$	$+1.09 \pm 0.26$	$+0.27 \pm 2.98$	+0.66	0.001		
$\log(\nu F_{1keV})$	$\log(F_{BLR})$	$+1.12 \pm 0.18$	$+0.93 \pm 2.18$	+0.79	0.001		
high state							
$\log(\nu F_{2.3GHz})$	$\log(F_{BLR})$	$+1.14 \pm 0.30$	$+6.10 \pm 5.1$	+0.65	0.002		
$\log(\nu F_{4.8GHz})$	$\log(F_{BLR})$	$+0.80 \pm 0.36$	$+0.34 \pm 5.63$	+0.42	0.04		
$\log(\nu F_{7.7GHz})$	$\log(F_{BLR})$	$+0.75 \pm 0.30$	-0.63 ± 4.68	+0.46	0.02		
$\log(\nu F_{11.2GHz})$	$\log(F_{BLR})$	$+0.69 \pm 0.29$	-1.59 ± 4.49	+0.44	0.03		
$\log(\nu F_{21.7GHz})$	$\log(F_{BLR})$	$+0.42 \pm 0.25$	-5.86 ± 3.74	+0.34	0.10		
		low state					
$\log(\nu F_{2.3GHz})$	$\log(F_{BLR})$	$+1.18 \pm 0.32$	$+6.78 \pm 5.14$	+0.67	0.002		
$\log(\nu F_{4.8GHz})$	$\log(F_{BLR})$	$+0.60 \pm 0.33$	-2.71 ± 5.18	+0.36	0.08		
$\log(\nu F_{7.7GHz})$	$\log(F_{BLR})$	$+0.72 \pm 0.31$	-1.02 ± 4.81	+0.44	0.03		
$\log(\nu F_{11.2GHz})$	$\log(F_{BLR})$	$+0.73 \pm 0.31$	-1.01 ± 4.83	+0.44	0.03		
$\log(\nu F_{21.7GHz})$	$\log(F_{BLR})$	$+0.67 \pm 0.31$	-1.98 ± 4.70	+0.42	0.04		

3.6 Обсуждение результатов

Проанализирована корреляция потоков от области BLR и на других частотах для 35 блазаров. В радиодиапазоне использовались многочастотные наблюдения на радиотелескопе РАТАН-600. Показано, что в некоторых случаях на частотах

Таблица 3.4: Параметры линейной регрессии (Y = aX + b) для блазаров типа BL Lac, где r и p — коэффициент корреляции Пирсона и уровень его значимости. Совместный результат автора из работы [104]

	V	~	h		22
	Ŷ		0	r	p
$\log(\nu F_{1.4GHz})$	$\log(F_{BLR})$	$+1.22 \pm 1.33$	$+2.94 \pm 18.22$	+0.31	0.38
$\log(\nu F_{143GHz})$	$\log(F_{BLR})$	$+1.37 \pm 0.49$	$+2.38 \pm 5.74$	+0.73	0.03
$\log(\nu F_{5500})$	$\log(F_{BLR})$	$+0.67 \pm 0.31$	-6.10 ± 3.62	+0.60	0.07
$\log(\nu F_{1keV})$	$\log(F_{BLR})$	$+0.68 \pm 0.29$	-5.45 ± 3.59	+0.64	0.05
		high state			
$\log(\nu F_{2.3GHz})$	$\log(F_{BLR})$	_	_	_	_
$\log(\nu F_{4.8GHz})$	$\log(F_{BLR})$	$+0.83 \pm 0.79$	-0.44 ± 12.62	+0.35	0.32
$\log(\nu F_{7.7GHz})$	$\log(F_{BLR})$	$+0.78 \pm 0.65$	-1.48 ± 10.24	+0.39	0.26
$\log(\nu F_{11.2GHz})$	$\log(F_{BLR})$	$+0.80 \pm 0.57$	-1.31 ± 8.92	+0.44	0.20
$\log(\nu F_{21.7GHz})$	$\log(F_{BLR})$	$+0.85 \pm 0.51$	-0.65 ± 7.86	+0.51	0.13
		low state			
$\log(\nu F_{2.3GHz})$	$\log(F_{BLR})$	_	_	_	_
$\log(\nu F_{4.8GHz})$	$\log(F_{BLR})$	$+1.97 \pm 0.88$	$+18.25 \pm 14.38$	+0.62	0.06
$\log(\nu F_{7.7GHz})$	$\log(F_{BLR})$	$+2.04 \pm 0.85$	$+18.95 \pm 13.63$	+0.65	0.04
$\log(\nu F_{11.2GHz})$	$\log(F_{BLR})$	$+2.13 \pm 0.78$	$+20.19 \pm 12.42$	+0.70	0.03
$\log(\nu F_{21.7GHz})$	$\log(F_{BLR})$	$+2.15 \pm 0.70$	$+19.91 \pm 10.91$	+0.74	0.02

радиодиапазона существует корреляция потока излучения с потоком от BLRобласти для блазаров двух типов — BL Lac и FSRQ.

В активном состоянии (радиодиапазон) корреляция потоков излучения радио- и BLR области у FSRQ и BL Lac блазаров примерно одного порядка (0.4–0.5), но для BL Lac объектов можно говорить о вероятном наличии связи: p хуже 0.05 для BL Lac-объектов в активном радиосостоянии на всех частотах РАТАН-600 (см. Таблицы 3.3, 3.4). В менее активном радиосостоянии можно говорить о наличии связи для BL Lac (p < 0.05). Объем выборки BL Lac-блазаров мал: в анализе участвовало всего лишь десять объектов, что менее 1% от известных BL Lac.

Показано, что состояние (активное или спокойное в радиодиапазоне) влияет на характер корреляции. Из Таблиц 3.3 и 3.4 видно, что в активном состоянии различий в коэффициентах корреляции между двумя подклассами блазаров не наблюдается. Но в спокойном состоянии коэффициент корреляции у BL Lac-блазаров заметно возрастает (в среднем коэффициент корреляции Пирсона увеличился на 0.25), в то время как у FSRQ-блазаров коэффициент корреляции практически не изменяется. Такое различное поведение, вероятно, связано с количеством объектов в выборках. Плотность потока значительно изменяется (в 3–4 раза) для нескольких объектов из каждой подвыборки блазаров. Для остальных источников разница между активным и спокойным состоянием не так значительна. Если принять во внимание количество источников в выборке (25–FSRQ и 10–BL Lac), то видно, что плотность потока изменяется значительно у $\sim 10-15\%$ FSRQ-блазаров и у $\sim 40\%$ BL Lac-блазаров.

Для анализа корреляции в других диапазонах спектра использовались неоднородные данные из литературы. Временной интервал между некоторыми измерениями (см. Таблицу 3.2) достигает 30 лет, что влияет на характер корреляции в первую очередь. Корреляция с потоком от BLR у FSRQ-блазаров больше чем у BL Lac-блазаров в оптическом и рентгеновском диапазонах. Возможно, эти виды излучений (оптический, УФ и рентгеновский) ионизируют вещество в BLR, а этого вещества в этой области больше именно у FSRQ-объектов, поэтому и корреляция в этих диапазонах оказалась больше. Также известно, что, как правило, родительскими галактиками для BL Lac-блазаров являются эллиптические, а у таких галактик практически нет межзвездного газа и пыли. Это различие FSRQ и BL Lac-объектов подтверждает также и то, что поток от BLR у BL Lac в среднем на порядок меньше, чем у FSRQ в рассмотренной выборке.

3.7 Выводы и заключение

С использованием многочастотных измерений, сделанных на радиотелескопе РАТАН-600 показано, что в некоторых состояних в радиодиапазоне существует корреляция потока излучения с потоком от BLR области для блазаров двух типов — BL Lac и FSRQ. По имеющимся литературным данным обнаружена подобная корреляция в излучении блазаров в диапазоне от радио до рентгена. В активном состоянии (в радиодиапазоне) корреляция излучения с потоком в BLR у FSRQ и BL Lac блазаров примерно одинакова (r = 0.4-0.5), из-за малости выборки объектов BL Lac можно говорить лишь о верояном наличии связи (p хуже 0.05 на некоторых частотах). Показано, что переменность излучения объектов хотя бы в одном диапазоне влияет на результат корреляции. Для исследования вза-имосвязи излучения в джете и аккреционном диске требуются одновременные

измерения потоков в разных диапазонах, а также сравнительный анализ корреляции излучения, выполненный при в разных состояниях объектов. Результаты этой Главы опубликованы в совместной работе диссертанта [104].

Рис. 3.1: Корреляция потоков из области образования широких линий и в радиодиапазоне в активном состоянии источников. Незаполненными квадратами обозначены FSRQ, заполненными кружками — BL Lac. Штрихованной линией показана аппроксимация прямой для FSRQ, а сплошной линией — для BL Lac объектов. Совместный результат автора из работы [104]

Рис. 3.2: Корреляция потоков из области образования широких линий и в радиодиапазоне в спокойном состоянии источников. Обозначения те же, что на Рисунке 3.1. Совместный результат автора из работы [104]

Рис. 3.3: Корреляция потоков из области образования широких линий и в различных диапазонах частот (использованы данные из других работ). Обозначения такие же, что на Рисунке 3.1. Совместный результат автора из работы [104]

Глава 4

Корреляция излучения в гамма и радиодиапазоне для блазаров по данным телескопов Fermi-LAT и PATAH-600

4.1 Введение и актуальность

Как было отмечено в пункте 1.3, в спектральном распределении энергии блазаров имеются два характерных компонента: низкочастотный, с максимумом в оптической/УФ или рентгеновской области спектра и высокочастотный, с максимумом в гамма-диапазоне. Объясняются они синхротронным и обратным комптоновским механизмами излучения [38]. Как правило, бо́льшая часть излучения блазаров в диапазоне от радио до оптического (а в некоторых случаях, и в рентгеновском) является синхротронным излучением заряженных частиц в джете (см., например, [21–24]). Синхротронное излучение продуцируется релятивистскими электронами, движущимися в магнитном поле [105]. Фотоны, необходимые для формирования второго компонента SED, образуются в результате обратного комптоновского излучения «первичной популяции фотонов», которая может быть образована синхротронным излучением или которая может быть взята из внешнего источника. В первом случае излучение называют синхрокомптоновским (synchrotron self-Compton, SSC) [106, 107], а во втором случае — внешнекомптоновским (external inverse Compton, EC) [108, 109]. Если фотоны гамма-диапазона происходят благодаря SSC, можно предположить коррелированность потоков в радио- и гамма-диапазонах из-за единого источника фотонов. Отсутствии какой-либо взаимосвязи излучений в этих диапазонах, напротив, послужит доводом в пользу ЕС сценария.

Так как большинство АЯГ, отождествленные с гамма-источниками, также являются яркими радиоисточниками (примерно половина из 1400 гаммаисточников из первого каталога Ферми (1FGL) отождествлена с АЯГ с помощью каталогов радиоисточников [29]), то вероятно существует корреляция между излучением в гамма- и радиодиапазоне. Исследуя такую корреляцию можно сделать выводы о временных задержках между различными событиями на кривых блеска в гамма- и радиодиапазоне, о физических процессах и особенностях излучения в джете АЯГ. Также наличие или отсутствие корреляции может помочь более точно определить параметры моделей для структуры и процессов, происходящих в АЯГ.

Обзор исследований взаимосвязи излучения блазаров в гамма- и радиодиапазоне.

Первые работы, подтверждающие существование корреляции излучения блазаров в гамма- и радио- диапазонах, были опубликованы по данным телескопа EGRET (см., например, [110, 111]). Но в дальнейшем эти результаты вызвали справедливые сомнения из-за использования наблюдательных данных, полученных не одновременно, а также из-за ограниченности выборки по потоку [112, 113].

Когда стали доступны данные телескопа LAT (Large Area Telescope) на борту космической обсерватории Ферми (Fermi), поиски значимых корреляции гамма- и радиоизлучения продолжились. В работе Гирланда и др. [114], при изучении обзоров блазаров в гамма-диапазоне — EGRET и Fermi-LAT, отмечено, что в течение года возможны изменения потока в 3 раза. В случае, когда в анализе использовались потоки, усредненные за год, кратковременная переменность (от суток до нескольких дней и недель) не сильно влияют на переменность в среднем за год. В работе [114] исследована корреляция $F\gamma$ - F_r для диапазонов E > 100 МэВ (данные первого каталога Fermi-LAT 1FGL [115]) и радиоизлуче-

61

ния на частоте 20 ГГц (данные обзора АТСА [116]). В этой работе также сделан численный расчет истинного соотношения $F\gamma$ – F_r , а не наблюдаемого. При этом учитывались эффекты селекции (пределы по чувствительности радио- и гаммателескопов), а также вероятность того, что некоторые радиоисточники не были обнаружены Fermi-LAT из-за их переменности в гамма-диапазоне. В результате была найдена статистически значимая (по уровню 3σ) корреляция для обоих (BL Lac и FSRQ) типов блазаров.

В работе Ковалев и др. [117] исследовалась выборка ярких в гаммадиапазоне АЯГ. Изучалась корреляция гамма-излучения, полученного Fermi-LAT за первые три месяца работы, и радиоизлучения, измеренного почти одновременно на VLBA. Непараметрический тест Кендалла выявил положительную корреляцию усредненного гамма-излучение (100 МэВ – 1 ГэВ) и плотности потока на частоте 15 ГГц (99.9% значимость). Такой же анализ, проведенный для усредненного гамма-излучение (1 ГэВ – 100 ГэВ), также показал значительную корреляцию (86% значимость).

В работе Акерманн и др. [118] проведен детальный статистический анализ корреляции гамма- и радиоизлучения АЯГ из первого каталога Fermi-LAT. В радиодиапазоне использовались архивные данные на частоте 8 ГГц (для 599 источников) и одновременные данные на частоте 15 ГГц (для 199 источников) для проверки существования корреляции с данными Fermi-LAT (наблюдательные данные на радиочастотах взяты из обзора Owens Valley Radio Observatory (OVRO) [37]). Главной чертой работы является использование большого числа объектов в выборке и выявление *внутренней* корреляции, наряду с *видимой*, используя новый статистический подход [119]. В результате анализа обнаружена значимая положительная корреляция излучения в сантиметровом радиодиапазоне и широкополосном гамма-диапазоне (E > 100 MэB) для обоих подклассов блазаров (BL Lac и FSRQ). Причем вероятность отвержения гипотезы о наличии корреляции оценивалась менее 10^{-7} при использовании архивных данных

В работе [120] изучалась корреляция высокочастотного радиоизлучения (37 ГГц) и гамма-излучения (100 МэВ < Е < 100 ГэВ) для 249 АЯГ на северных широтах. Была найдена значительная корреляция потоков и светимостей в этих диапазонах (например, для всей выборки коэффициент корреляции Кендалла составил $\tau = 0.195$ с вероятностью некоррелированности p < 0.001).

62

На основе рассмотренных работ можно сделать вывод о том, что использование однородных (полученных на одном инструменте) и одновременных (или квазиодновременных) наблюдательных данных в гамма- и радиодиапазоне является важным для выявления взаимосвязи излучения блазаров в этих диапазонах. В настоящей работе проведен статистический анализ корреляции потоков в гамма- и радиодиапазоне для выборки из 123 блазаров с использованием квазиодновременных широкодиапазонных наблюдательных данных телескопов Fermi-LAT и PATAH-600. Анализ коэффициентов корреляции с использованием квазиодновременных измерений на пяти радиочастотах (21.7, 11.2, 7.7, 4.8 и 2.3 ГГц) был произведен впервые.

4.2 Описание выборки

Используя данные наблюдений АЯГ в гамма-диапазоне из первого каталога космического телескопа Ферми — Fermi-LAT first source catalog (1FGL) и наблюдательные данные РАТАН-600 в радиодиапазоне мы провели исследование корреляции излучения источников.

1FGL каталог Ферми доступен в базе данных VizieR¹, и его подробное описание дано в работе Абдо и др. [29]. В каталог вошли наблюдательные данные, полученные в период с 4 августа 2008 по 4 июля 2009 года для 1451 АЯГ. В каталоге представлены 5 диапазонов: 100 МэВ – 300 МэВ, 300 МэВ – 1 ГэВ, 1 ГэВ – 3 ГэВ, 3 ГэВ – 10 ГэВ, 10 ГэВ – 100 ГэВ. Единица измерения потоков — число фотонов на 10^{-8} см⁻² с⁻¹. Отсчеты в каждой полосе усреднены за указанный период (11 месяцев). Также в каталоге можно найти полный поток в гамма-диапазоне (1 – 100 ГэВ).

В тот же период, когда проводился обзор для первого каталога Ферми, на радиотелескопе РАТАН-600 также проводились наблюдения АЯГ в рамках различных программ. В настоящей работе мы использовали многочастотные данные, полученные в ноябре 2008 года и в апреле 2009 года. В эти месяцы наблюдалось порядка 300 АЯГ. Каждый источник наблюдался более трех раз (обычно 5–10 раз) на каждой частоте (2.3, 4.8, 7.7, 11.2 и 21.7 ГГц). Описание наблюдений на РАТАН-600 с использованием штатного комплекса радиометров² можно

¹http://vizier.u-strasbg.fr/

²описание приемников на странице обсерватории http://sao.ru/hq/lrk/ind2.html

найти в работе [90] и в пункте 2.1 Главы 2 данной диссертации. Наблюдательные данные обработаны с помощью штатного пакета FADPS [59]. Подробнее о методике обработки и калибровки измерений можно посмотреть также в пункте 2.1. Стандартные ошибки определения плотности потока для этих данных равны: 7– 8% на частоте 2.3 ГГц и 4–5% на остальных частотах. Почти все источники имеют на всех рассмотренных радиочастотах отношение сигнал/шум $S/N \ge 4$. Все представленные в данной работе измерения блазаров, проведенные на РАТАН-600, опубликованы в [90] или/и доступны в онлайн-каталоге BLcat на странице обсерватории САО РАН³ [69].

После сопоставления источников оказалось, что для 123 АЯГ доступны квазиодновременные наблюдательные данные Fermi-LAT и РАТАН-600. Они и составили окончательную выборку для дальнейшего исследования (см. Таблицу 4.1). В ней представлены блазары различных подклассов: 53 — BL Lac, 6 — BL Lac кандидаты, 8 — блазары неопределенного типа (Blazars of uncertain type), 56 — FSRQ. В Таблице 4.1 представлены: имя объекта (из NED⁴ или Roma-BZCAT⁵ [31]), тип блазара (Roma-BZCAT) и красное смещение (NED).

Почти все радиоспектры FSRQ-блазаров и большинства BL Lac-блазаров можно отнести к плоским (спектральный индекс $|\alpha| \le 0.5$). Распределение спектральных индексов для FSRQ и BL Lac источников нашей выборки представлены на Рисунке 4.1.

Распределения измеренных плотностей потоков на частоте 4.8 ГГц для BL Lac и FSRQ-блазаров представлены на Рисунке 4.2. Мы исключили из этого построения источник 3С 273 ($F_{4.8GHz} > 39$ Ян) для удобства представления распределения. Для большинства BL Lac объектов плотность потока на всех частотах не превышает 1 Ян, а для большинства FSRQ объектов — 5 Ян. Следует отметить, что блазары подкласса FSRQ, наблюдавшиеся на РАТАН-600, являются ограниченными по потоку ($F_{radio} \ge 1$ Ян). В то же время, блазары типа BL Lac представлены неполно, так как они наблюдались в рамках других программ, а не в рамках мониторинга всех доступных источников этого класса. В Таблице 11 (в Приложении Б) представлены, использованные в настоящей работе, плотности потоков в радиодиапазоне и значения спектрального индекса,

³http://www.sao.ru/blcat/

⁴http://ned.ipac.caltech.edu/

⁵http://www.asdc.asi.it/bzcat/

измеренного между 2.3 и 7.7 ГГц (но, из-за отсутствия измерений на 2.3 ГГц, для двух объектов спектральный индекс посчитан между 4.8 и 7.7 ГГц).

Рис. 4.1: Распределение спектральных индексов, измеренных между 2.3 и 7.7 ГГц, для BL Lac-блазаров (показаны черным) и FSRQ-блазаров (показаны серым). Совместный результат автора, опубликован в работе [121]

Рис. 4.2: Распределение плотностей потоков на 4.8 ГГц, измеренных на РАТАН-600, для BL Lac-блазаров (показаны черным) и FSRQ-блазаров (показаны серым). Совместный результат автора, опубликован в работе [121]

4.3 Результаты

4.3.1 Корреляция потоков

Наличие широкодиапазонных наблюдательных данных для относительно большого и примерно равного числа блазаров двух подклассов (BL Lac и FSRQ) позволило провести для них сравнительный анализ коэффициентов корреляции плотности потока на пяти радиочастотах и потока в пяти полосах гаммадиапазона ($F\gamma$ - F_r).

Мы считали коэффициенты корреляции Пирсона (r) для оценки зависимости $F\gamma - F_r$. Коэффициенты корреляции излучений в гамма- и радиодиапазоне представлены в Таблице 4.2. В этой же таблице приведены: число объектов с доступными радиоизмерениями (N) и типичные значения уровня значимости коэффициента корреляции (CL) для каждой полосы в гамма-диапазоне. На Рисунках 7 – 11 (в Приложении В) представлены зависимости излучения в гамма- и радиодиапазоне: BL Lac показаны кружками, FSRQ — треугольниками, кандидаты в BL Lac (BL Lac candidates) — пустыми квадратами, блазары неопределенного типа (Blazars of uncertain type) — заполненными квадратами.

Рисунок 4.3 иллюстрирует результаты, представленные в Таблице 4.2. На этом рисунке показано распределение коэффициента корреляции Пирсона относительно рассмотренных гамма-диапазонов и радиочастот для BL Lac и FSRQ типа блазаров. Бары ошибок соответствуют стандартному отклонению, определенному согласно [122]:

$$\sigma_r = (1 - r^2)/(\sqrt{N - 1}),$$

где *N* — число объектов, а *r* — коэффициент корреляции Пирсона.

Рис. 4.3: Распределение коэффициента корреляции Пирсона в зависимости от рассматриваемых гамма-диапазонов и радиочастот. Коэффициенты корреляции показаны кружками для BL Lac-блазаров и квадратами — для FSRQ-блазаров. По горизонтальной оси цифрами 1–5 обозначены пять полос гамма-диапазона (0.1–0.3, 0.3–1, 1–3, 3–10 и 10–100 ГэВ, соответственно) для каждой из пяти радиочастот: 21.7, 11.2, 7.7, 4.8 и 2.3 ГГц. Совместный результат автора, опубликован в работе [121]

Коэффициент корреляции оказался чувствительным к рассматриваемой частоте и полосе гамма-излучения. Коэффициент корреляции становится меньше, при рассмотрении потоков в полосе высоких энергий, причем это справедливо для обоих типов блазаров. Из Таблицы 4.2 и Рисунка 4.3 видно, что корреляция практически исчезает для BL Lac-блазаров в диапазоне 10–100 ГэВ. В среднем, значения коэффициентов корреляции больше для BL Lac-блазаров, сравнимые значения обнаруживаются лишь при рассмотрении частоты 21.7 ГГц.

Для обоих типов источников обнаружилась общая тенденция: наибольшая корреляция плотностей потока на всех радиочастотах наблюдается с потоком в гамма-диапазоне 0.1–0.3 ГэВ. Корреляция выше для BL Lac типа блазаров, по сравнению с FSRQ типом, на всех радиочастотах (кроме 21.7 ГГц) с потоком в 0.1–0.3 и 0.3–1 ГэВ полосах гамма-диапазона. В полосе 10–100 ГэВ для обоих типов блазаров корреляция с радиоданными практически не наблюдается. В целом, для FSRQ типа блазаров корреляция примерно одного порядка в большинстве диапазонов, в то время как в случае BL Lac-блазаров наблюдается эволюция корреляции — значение r уменьшается при рассмотрении гамма полос высоких энергий.

Если рассмотреть изменение коэффициента корреляции с частотой, у BL Lac-блазаров он одного порядка на 2.3 ГГц и на 21.7 ГГц с потоком из полосы 0.1–1 ГэВ, но ситуация иная для FSRQ-объектов — на частоте 2.3 ГГц коэффициент корреляции заметно меньше, чем на 21.7 ГГц с потоком из того же гамма-диапазона (0.1–1 ГэВ). Таким образом, можно заключить, что степень коррелированности потоков для BL Lac-объектов больше зависима от полосы гамма-диапазона, чем от частоты, а для FSRQ типа блазаров коэффициент корреляции сильно варьируется как с полосой гамма-диапазона, так и с частотой.

4.3.2 Оценка значимости полученных корреляций

Для количественной оценки степени достоверности полученных коэффициентов корреляции (далее в этом пункте для краткости — кк) мы применили метод создания суррогатных данных, описанный в работе Павлидоу и др. [119]. Суть метода заключается в имитации внутренне некоррелированных выборок, путем многократных перестановок наблюдательных данных (поток, красное смещение z) из реальной выборки. Используя известные потоки в радио- (F_r) и гамма- (F_{γ}) диапазонах, вычисляются соответствующие светимости (L_r, L_{γ}) , строятся все возможные пары L_r-L_{γ} , потом всем парам присваивается случайное значение z(какого-либо объекта из выборки) и пересчитываются светимости обратно в новые потоки F'_r , F'_{γ} . После чего формируются случайные выборки (суррогатные данные), для которых считается кк. Описанные шаги повторяются многократно (~ 10^7 или более раз) и строится распределение кк. Тогда вероятность получить значение кк такое же или даже большее, чем для реальной выборки ($r \ge r_{real}$) для внутренне некоррелированных $F'_r - F'_{\gamma}$ будет равна той части площади под графиком распределения кк, где $r \ge r_{real}$. Подробности в работе [119]. Данный метод позволяет учесть искусственную коррелированность светимости и красного смещения, а также эффект селекции по потоку (Malmquist bias), при этом динамический диапазон реальных данных сохраняется.

Количество источников выборки при проверке степени достоверности сократилось до 103 (48 — BL Lac и 55 — FSRQ), так как в этом методе используются светимости, для вычисления которых нужны z. Мы повторяли вышеописанную процедуру 10^7 раз и получили распределение кк, из которой вычислили вероятность получить кк больший или равный, чем для реальной выборки, из внутренне некоррелированных наборов данных. Результаты представлены в Таблице 4.3, где даны: N — число блазаров в подвыборке, r — значение кк Пирсона и sig — статистическая значимость кк. Значения кк (r) приведенные в Таблице 4.3, как можно заметить, в некоторых случаях несколько отличны от кк в Таблице 4.2, это связано с тем, что количество объектов в подвыборках разное (в проверке на достоверность участвуют только блазары с известным z).

Наибольшая значимость кк обнаружена в случаях с наибольшим значением самого кк (например, $sig = 3.24 \times 10^{-7}$ при r = 0.75). Высока вероятность получить коррелированность случайным образом в полосах 1–3 и 3–10 ГэВ для FSRQ-блазаров (до 56%), для BL Lac-блазаров кк нельзя считать сильно значимым для излучений плотностей потока на частотах 11.2 и 21.7 ГГц и потоком в полосе 3–10 ГэВ (есть вероятность порядка 2–6% получить подобные значения кк из внутренне некоррелированных данных).

4.3.3 Корреляция светимостей

Мы исследовали корреляцию светимостей в радио- и гамма-диапазонах для нашей выборки, используя поток на частоте 4.8 ГГц и интегральный поток > 0.1 ГэВ.

Для рассчета светимости в радиодиапазоне ипользовалась стандартная формула:

$$L_r = 4\pi ((1+z)d_L)^2 F_{4.8GHz} (1+z)^{-\alpha-1},$$
(4.1)

где α — это спектральный индекс, z — красное смещение, d_L — фотометрическое расстояние (luminosity distance) и $F_{4.8GHz}$ это плотность потока, определяемая как:

$$F_{\nu} \sim \nu^{\alpha} \tag{4.2}$$

Светимость в гамма-диапазоне определялась следующим соотношением:

$$L_{\gamma} = 4\pi d_L^2 F_{\gamma},\tag{4.3}$$

где F_{γ} это плотность потока, вычисляемая так:

$$F_{\gamma} = \frac{S(E_1, E_2)}{(1+z)^{2-\Gamma}}$$
(4.4)

В этих уравнениях $S(E_1, E_2)$ — это поток гамма-энергии между $E_1 = 0.1$ ГэВ и $E_2 = 100$ ГэВ, а Г — это фотонный спектральный индекс (photon spectral index). Все необходимые данные для подсчета светимости в гамма-диапазоне взяты из каталога 1FGL, доступной в базе данных VizieR⁶. В расчетах светимостей мы предполагали Λ CDM космологию с $H_0=71$ км с⁻¹ Мпк⁻¹, $\Omega_m=0.27$ и $\Omega_{\Lambda}=0.73$ [123]. Красное смещение не известно для пяти BL Lac-блазаров и одного FSRQ, поэтому на Рисунке 4.4 представлено 103 объекта.

Из Рисунка 4.4 очевидно существование зависимости $L_{\gamma}-L_{radio}$ для блазаров из нашей выборки. FSRQ-блазары расположены, в основном, в правой верхней части графика, в тоже время, в области высокой светимости происходит наложение BL Lac и FSRQ типов блазаров (при $L_{\gamma} \ge 10^{46}$ эрг с⁻¹ и $L_{radio} \ge 10^{43}$ эрг с⁻¹). Один источник на этом построении выделяется среди других, будучи более слабым по светимости, в левом нижнем углу, это лацертида — 2MASS J17250434+1152155. Этот источник слабый в радиодиапазоне (десятки мЯн) и имеет плоский радиоспектр, согласно архивным измерениям РАТАН-600.

Анализ, проведенный с помощью теста Спирмана, выявил корреляцию светимостей $\rho = 0.88$ (уровень значимости 99.9%). Если рассматривать отдельно подклассы блазаров, для BL Lac-блазаров выявлена корреляция с коэффициентом корреляции Спирмана $\rho = 0.86$ и для FSRQ-блазаров $\rho = 0.66$, в обоих случаях с высоким уровнем значимости (99.9%).

⁶J/ApJS/188/405

Эффекты селекции и искусственная коррелированность светимости и красного смещения — это факторы, сильно влияющие на результат $L_{\gamma}-L_{radio}$ корреляции [112,124]. Полученные нами большие значения коэффициента корреляции не обязательно означают наличие внутренней корреляции. Но, например, в работе [125] была найдена корреляция светимостей гамма- и (суб-)мм диапазона, и наши результаты, хотя и без учета вышеупомянутых эффектов, согласуются с выводами в этой работе и могут быть рассмотрены как правдоподобные.

Рис. 4.4: Соотношение светимостей в гамма- (интегральная, > 0.1 ГэВ) и радиодиапазоне (на частоте 4.8 ГГц). ВL Lac-блазары показаны кружками, FSRQблазары — треугольниками. Совместный результат автора

4.4 Выводы и заключение

В настоящей работе исследовалась коррелированность излучения блазаров в гамма- и радиодиапазоне. Для анализа коэффициентов корреляции светимостей и потоков в этих диапазонах использовались данные телескопов Fermi-LAT и РАТАН-600. В исследовании использовались почти одновременные наблюдательные данные в гамма- и радиодиапазоне, усредненные за один и тот же период времени. Наличие квазиодновременных наблюдательных данных в широком интервале радиочастот позволило оценить корреляцию для пяти частот (от 2.3 до 21.7 ГГц), что было сделано впервые. Выборка содержит 123 объекта и в ней представлены различные подклассы блазаров: 53 — BL Lac, 56 — FSRQ. В некоторых работах показано, что SSC модели хорошо описывают SED BL Lacблазаров, в то время как излучение блазаров класса FSRQ обычно объясняется EC механизмом (см., например, [40,126,127]). Так как SSC подразумевает единое происхождение радио- и гамма-фотонов в блазарах, то можно ожидать, в общем, большую коррелированность излучений этих диапазонов для BL Lac-объектов, по сравнению с FSRQ-блазарами.

Обнаружена положительная корреляция плотности потока в радиодиапазоне с потоком в гамма-диапазоне для источников из исследуемой выборки, но существует значительный разброс в значениях коэффициента корреляции (r от -0.03 до 0.74). Для объектов BL Lac типа корреляция выше, чем для FSRQ типа блазаров, в полосах с низкими энергиями (2.3–4.8 ГГц и 0.1–1 ГэВ). Также, для BL Lac-блазаров корреляция радиоизлучения примерно одного порядка и на частоте 2.3 и на 21.7 ГГц с потоком в диапазоне 0.1-1 ГэВ, а у FSRQ-блазаров корреляция излучения на частоте 2.3 ГГц заметно ниже (чем на частоте 21.7 ГГц) с потоком в полосах 0.1-1 ГэВ. Для BL Lac-блазаров обнаруживается положительная корреляция с высоким уровнем значимости (> 99%) на всех рассмотренных частотах и полосах меньше 3 ГэВ. В диапазоне высоких энергий (10-100 ГэВ) для BL Lac объектов корреляция потоков радио- и гамма-диапазонов практически не наблюдается. В работе [118] анализ поведения корреляции для BL Lac объектов выявил такой же результат: с увеличением энергии фотонов гаммаизлучения, корреляция с радиоизлучением уменьшается и даже исчезает. Величина коэффициента корреляции очевидно зависит от рассматриваемой полосы гамма-излучения — корреляция радиоизлучения на любой из рассмотренных частот сильнее с потоком в полосах 0.1–1 ГэВ. В целом для блазаров типа BL Lac корреляция излучений сильно зависит от гамма-диапазона, а для блазаров типа FSRQ коэффициент корреляции значительно меняется и с рассматриваемой радиочастотой и с гамма-диапазоном.

Для оценки степени достоверности полученных коэффициентов корреляции мы использовали метод генерации суррогатных выборок. В результате применения которого мы обнаружили, что корреляция излучений во всех рассмотренных радио- и гамма-диапазонах (меньше 3 ГэВ) статистически значима для BL Lac-блазаров (вероятность случайного возникновения корреляции составила
всего лишь ~ $10^{-3} - 10^{-7}$). Наиболее достоверны коэффициенты корреляции для полосы 0.1–0.3 ГэВ, а для полосы 10–100 ГэВ — наоборот, коэффициенты корреляции незначимы для обоих подклассов блазаров на всех рассмотренных частотах.

Исследование светимостей выявило сильную взаимосвязь излучений в гамма- и радио- диапазонах, коэффициент корреляции Спирмана ρ составил 0.88 при уровне значимости более 99.9%. Такая связь между светимостями в этих диапазонах обнаружена для обоих подклассов блазаров: для BL Lac источников $\rho = 0.86$ и для FSRQ $\rho = 0.66$ (уровень значимости более 99.9%). Подобные результаты для светимостей блазаров были получены, например, в работах [118, 128]. Однако следует помнить, что, хотя светимость характеризует внутреннее состояние, она сильно зависит от красного смещения [124], тем самым приводя к искусственной коррелированности светимостей. К тому же, светимость блазара зависит от таких параметров излучения как Доплеровское усиление, Лоренц фактор, угол обзора. Если эти факторы не известны и не учтены для каждого объекта и на каждой исследуемой частоте (и полосе), то это может значительно повлиять на результаты корреляционного анализа.

В работе использовались квазиодновременные измерения на пяти радиочастотах, полученнные в первый год эксплуатации Fermi-LAT (в течение нескольких месяцев). Степень синхронности наблюдений в этих диапазонах играет очень важную роль и сильно влияет на результат анализа корреляции, это показано, например, в работах [118, 125]. В статье [118] исследователи нашли корреляцию излучений $F\gamma - F_r$ более сильной в случае использования одновременных наблюдательных данных, по сравнению с архивными. В работе [125] выявлена наибольшая статистическая значимость корреляции L₂-L_{radio} в измерениях, полученных квазиодновременно (в течение месяцев), по сравнению с данными, полученными в течение недель или архивными (усредненными за 27 месяцев). В работе [129] анализируются кривые блеска в радио- и гамма-диапазоне 54 ярких блазаров из выборки Ферми. Авторы определили временную задержку (в этих кривых блеска) в 12 ± 8 на длине волны 3 мм. Согласно этому исследованию, временная задержка возрастает при рассмотрении см диапазона. Если одни и те же релятивистские электроны сначала сталкиваются с синхротронными фотонами оптического диапазона и передают им энергию (создавая тем самым фотоны гамма-энергий), а затем, после расширения и «охлаждения», достигают

73

области, где формируется радиоизлучение, то должны наблюдаться значительные временные задержки между гамма- и радиоизлучением. Также временные задержки могут возникнуть, если возмущение, возникшее в радиоядре джета, вызывает вспышку в (суб-)мм, а затем, ниже по джету (дальше от ядра) происходит вспышка в гамма-диапазоне. На сегодняшний день нет общепринятой физической модели для областей образования радио/гамма излучения: некоторые модели предполагают возникновение гамма-излучения выше, некоторые ниже, по отношению к радиоядру в джете, в зависимоти от типа источника (BL Lac или квазар), от типа вспышки (относительно сильная или слабая) и от радиодиапазона (см, мм). Возможные места происхождения гамма-излучения обсуждаются, например в работах [129, 130]. Как бы то ни было, хорошо известно из наблюдений существование значительной задержки между вспышками в гаммаи радиодиапазоне. Поэтому шанс обнаружить корреляцию излучений блазаров в этих разных диапазонах электромагниного спектра больше, в случае использования измерений, усредненных за некий период (а не одновременных).

Наряду с результатами предыдущих исследователей взаимосвязи излучения в гамма- и радиодиапазоне в АЯГ (например, [114, 117, 118]), результаты настоящей работы могут быть рассмотрены как допускающие наличие связи между излучениями в этих разных диапазонах электромагнитного спектра и как вывод в пользу теории о единой популяции фотонов гамма- и радиоизлучения блазаров (в рамках SSC модели излучения). Два вероятных механизма, ответственных за гамма-излучение в блазарах, SSC и ЕС, возможно оба присутствуют, но в различных случаях дают разный вклад. Поэтому так нетривиально сделать однозначный вывод о прямой и очевидной взаимосвязи излучения блазаров в этих диапазонах электромагнитного спектра. Результаты работы не противоречат выводам, сделанным предыдущими исследователями, а дополняют их результаты более подробным представлением радиодиапазона.

Какие физические причины ответственны за такое различие в распределении коэффициента корреляции у FSRQ и BL Lac объектов, относящихся к одному типу АЯГ — блазарам? Почему, в зависимости от полосы (или частоты) диапазона, наблюдается значительное изменение коэффициента корреляции у объектов типа BL Lac (или FSRQ)? Ответы на эти и другие подобные вопросы требуют продолжения детального изучения более полных выборок блазаров, учета факторов, которые могут внести ошибки в оценку значимости и величины

74

возможной корреляции излучений в гамма- и радио- диапазонах (эффекты селекции, сильная зависимость светимости от красного смещения и др.). Результаты этой Главы изложены в совместной работе [121].

Таблица 4.1: Список объектов. Совместный результат автора, опубликован в работе [121]

Имя	Тип	Z	Имя	Тип	1 4
BZB J0025+1515	BL Lac	-	PKS 1118-05	FSKQ	1.2
BZB J0035+1515	BL Lac	1.28	FBQ8 J115019.2+241753	BL Lac	0
GC0039+23	FSKQ	1.426	40 29.45	FSKQ	0.
PKS 0047+023	BL Lac	1.44	EX01218.8+3027	BL Lac	0.
FBQS J0050-0929	BL Lac	0.103	ON 231	BL Lac	0.
PKS 0106+01	FSRQ	2.099	PKS 1219+04	FSRQ	0.9
GC 0109+224	BL Lac	0.265	PKS 1222+21	FSRQ	0.4
BZQ J0136+4751	FSRQ	0.859	3C 273	FSRQ	0.1
PKS 0139-09	BL Lac	0.733	FBQS J123014.0+251807	BL Lac	0.1
2MASX J01593439+1047052	BL Lac cand	0.195	3C 279	FSRQ	0.
4C +15.05	Blaz.uncer	0.833	1WGA J1310.4+3220	FSRQ	0.9
2MASS J02171711+0837038	BL Lac cand	1.4	GB6 J1327+2210	FSRQ	
PKS 0215+015	FSRQ	1.715	PKS 1335-127	FSRQ	0.:
B2 0218+35	Blaz.uncer	0.944	FIRST J134105.1+395945	BL Lac	0.
3C 66A	BL Lac	0.444	CGRaBS J1357+7643	FSRO	1.
BZO 10237+2848	FSRO	1 213	PKS 1406-076	FSRO	1
PKS 0235+164	BLLac	0.94	FBOS 1142700 4+234800	BLLac	0
2MASX 102503703+1712092	Blaz uncer	1.1	2MASS 114424821+1200402	BL Lac	0
$D7D I0202\pm 4716$		0.475	DVS 1502+106	ESPO	1
DZD 10216+0004	DL Lac	0.475	DKS 1502+006	ESRQ	1.
DZD J0310+0904	DL Lac	-	PKS 1510.09	FSKQ	0.
NGC 1275	Blaz.uncer	0.018	PKS 1514-107	FSKQ	0
BZB J0319+1845	BL Lac	0.19	PKS 1514+197	BL Lac	0
1H 0323+022	BL Lac	0.147	IRXS J152239.7-273025	BL Lac	1.
PKS 0332-403	BL Lac cand	-	4C +05.64	FSRQ	1.
NRAO 140	FSRQ	1.259	BZB J1555+1111	BL Lac	0
PKS 0336-017	FSRQ	0.85	SDSS J160706.23+155136.8	BL Lac	0.
1H 0413+009	BL Lac	0.287	4C +10.45	FSRQ	1.
PKS 0420+022	FSRQ	2.277	BZQ J1613+3412	FSRQ	1.
PKS 0420-01	FSRQ	0.916	4C +38.41	FSRQ	1.
PKS 0422+004	BL Lac	0.31	3C 345	FSRQ	0.
PKS 0446+11	BL Lac	1.207	MRK 0501	BL Lac	0.
PKS 0454-234	FSRO	1.003	PKS 1717+177	BL Lac	0.
4C-02 19	FSRO	2 291	2MASS J17250434+1152155	BL Lac	0
BZO J0505+0459	BL Lac cand	0.027	NRAO 530	FSRO	0
2MASS 105075617+6737242	BL Lac	0.027	1FS 1741+196	BLLac	0.
B7B 10509+0541	BL Lac	0.304	OT 081	Blaz uncer	0.
DED 30307+0341	ESPO	0.304	D7D 11756+5522	DIAZ.uncer	0.
PKS 0520 057	FSKQ	0.410	DZD 11200 7222	DL Lac	0.
PKS 0559-057	FSKQ	0.839	BZB J1800+7828	DL Lac	0
OH-10	FSRQ	0.8/2	30 380.0	Blaz.uncer	0.
2MASS J06251826+4440014	BL Lac	-	BZQ J1852+4855	FSRQ	1
2MASX J07103005+5908202	BL Lac	0.125	PKS 1954-388	FSRQ	0
PKS 0723-008	Blaz.uncer	0.128	BZB J2005+7752	BL Lac	0.
PKS 0735+17	BL Lac	0.424	PKS 2012-017	BL Lac	0
PKS 0736+01	FSRQ	0.189	BZQ J2035+1056	FSRQ	0.
PKS 0748+126	FSRQ	0.889	PKS 2047+039	BL Lac cand	
PKS 0754+100	BL Lac	0.266	PKS 2131-021	BL Lac	0.
PKS 0805-07	FSRQ	1.837	BZQ J2143+1743	FSRQ	0.
PKS 0808+019	BL Lac	0.93	4C 06.69	FSRQ	0.
B3 0814+425	BL Lac	0.53	PKS 2149+173	BL Lac	0.
PKS 0823+033	BL Lac	0.506	BL Lac	BL Lac	0
BZO J0830+2410	FSRO	0.941	PKS 2201+171	FSRO	1
PKS 0829+046	BL Lac	0.18	PKS 2209+236	FSRO	1
2FG 10852-1237	FSRO	0.16	3C 446	FSRO	1
PKS 0851+202	BLID	0.300	BZO 12220-0832	FSDO	1
$R_{TO} = 10020 \pm 4441$	ESDO	2 1 9 6	AC = 11.60	FEDO	1
DLU JUY2074441	L PL L	2.180	40 -11.09	FSKQ	1.
ZIVIASS JU9303/59+4950256	BL Lac	0.188	SU 454.5	FSKQ	0
OK 290	FSRQ	0.708	PKS 2254-204	BL Lac	
2MASS J10121335+0630569	BL Lac	0.727	PKS2255-282	FSRQ	0.
SDSS J101603.13+051302.3	FSRQ	1.713	BZB J2304+3705	BL Lac	
FBQS J104309.0+240835	FSRQ	0.56	PKS 2320-035	FSRQ	1
	Dlag um a an	0.80	211455 122385638+2124410	BL Lac cand	0
4C01.28	Blaz.uncer	0.09	2101A55 J25565056+2124410	DL Lac callu	0.

Таблица 4.2: Коэффициенты корреляции Пирсона для широкодиапазонного гамма-излучения (0.1 – 100 ГэВ) и многочастотного радиоизлучения (2.3 – 21.7 ГГц). Также представлены типичные уровни значимости для рассмотренных диапазонов (CL) и число источников, участвовавших в анализе (N). Совместный результат автора, опубликован в работе [121]

	1	1	1						
Тип блазара	N	0.1–0.3 ГэВ	0.3–1 ГэВ	1–3 ГэВ	3–10 ГэВ	10–100 ГэВ			
21.7 ГГц									
BL Lac	50	+0.61	+0.53	+0.43	+0.25	-0.03			
FSRQ	56	+0.57	+0.46	+0.39	+0.26	+0.23			
		·	11.2 ГГц			•			
BL Lac	53	+0.69	+0.62	+0.51	+0.32	+0.01			
FSRQ	55	+0.47	+0.36	+0.28	+0.16	+0.16			
	7.7 ГГц								
BL Lac	53	+0.73	+0.67	+0.56	+0.36	+0.04			
FSRQ	56	+0.42	+0.31	+0.23	+0.11	+0.11			
			4.8 ГГц			-			
BL Lac	53	+0.74	+0.69	+0.59	+0.39	+0.06			
FSRQ	56	+0.39	+0.26	+0.18	+0.07	+0.07			
			2.3 ГГц						
BL Lac	51	+0.64	+0.64	+0.55	+0.39	+0.14			
FSRQ	56	+0.39	+0.26	+0.18	+0.05	+0.03			
	CL								
BL Lac		99%	99%	99%	99%	<90%			
FSRQ		99%	95%	90%	<90%	<90%			

Таблица 4.3: Коэффициенты корреляции Пирсона (r) и их значимости (sig), посчитанные методом создания суррогатных данных, для источников с известным красным смещением (N). Совместный результат автора, опубликован в работе [121]

Е (ГэВ)			0.1–0.3		0.3–1		1–3		3-10	10-100	
Тип блазара	N	r	sig	r	sig	r	sig	r	sig	r	sig
					21.7	ГГц					
BL Lac	45	+0.61	5.29×10^{-7}	+0.53	3.76×10^{-5}	+0.42	1.13×10^{-3}	+0.24	0.055	-0.05	0.629
FSRQ	55	+0.56	6.26×10^{-7}	+0.46	9.79×10^{-5}	+0.39	1.13×10^{-3}	+0.26	0.023	+0.23	0.043
					11.2	ГГц					
BL Lac	48	+0.70	4.14×10^{-7}	+0.62	1.32×10^{-6}	+0.51	8.21×10^{-5}	+0.31	0.016	-0.003	0.934
FSRQ	54	+0.47	7.74×10^{-5}	+0.36	2.47×10^{-3}	+0.28	0.016	+0.16	0.134	+0.15	0.15
					7.7 1	ГГц					
BL Lac	48	+0.74	3.36×10^{-7}	+0.67	4.28×10^{-7}	+0.56	1.38×10^{-5}	+0.35	6.54×10^{-3}	+0.03	0.796
FSRQ	55	+0.42	4.21×10^{-4}	+0.30	9.68×10^{-3}	+0.23	0.048	+0.11	0.278	+0.11	0.288
					4.8 1	ГГц					
BL Lac	48	+0.75	3.24×10^{-7}	+0.69	4.06×10^{-7}	+0.58	5.44×10^{-6}	+0.38	3.14×10^{-3}	+0.05	0.632
FSRQ	55	+0.39	1.28×10^{-3}	+0.26	0.025	+0.18	0.104	+0.07	0.478	+0.07	0.480
	2.3 ГГц										
BL Lac	46	+0.63	4.87×10^{-7}	+0.63	4.94×10^{-7}	+0.54	2.35×10^{-5}	+0.38	2.87×10^{-3}	+0.13	0.28
FSRQ	55	+0.39	1.08×10^{-3}	+0.26	0.025	+0.18	0.110	+0.05	0.562	+0.04	0.695

Глава 5

Исследование синхротронной компоненты в спектральном распределении энергии блазаров

5.1 Введение и актуальность

Как уже неоднократно упоминалось в диссертации, в спектральном распределении энергии блазаров имеются два характерных компонента: низкочастотный, с максимумом в оптической или рентгеновской области спектра и высокочастотный, с максимумом в гамма-диапазоне. Объясняется их происхождение синхротронным излучением и действием обратного комптоновского эффекта [38], а соответствующие пиковые частоты обозначаются ν_{peak}^s и ν_{peak}^{IC} . По положению ν_{peak}^s блазары делят на высоко/низкочастотные (см. пункт 1.3). Блазары, у которых $\nu_{peak}^s < 10^{13}$ Гц, иногда еще называют «сильно» низкочастотными (very low synchrotron peaked — VLSP), то есть их пик синхротронной компоненты приходится на ИК/мм диапазон спектра [131]. В работах по определению частоты максимума синхротронного излучения блазаров лишь у ~ 10% обнаруживается $\nu_{peak}^s < 10^{13}$ Гц, т.е. таких блазаров, и в особенности лацертид, очень мало. Например, в работе Ниепполы и др. [70] VLSP-блазаров только 3%. По данным каталога BLcat (включает в себя лацертиды, наблюдающиеся на РАТАН-

600), примерно 10% можно классфицировать как VLSP [69]. Типичное значение ν_{peak}^{s} для FSRQ-блазаров (квазары с плоским радиоспектром) определено как $10^{13.1 \pm 0.1}$ Гц, а для BL Lac-блазаров (лацертиды) значение этого параметра на порядок больше [87].

Определение частоты максимума синхротронного излучения, а с ним и типа блазара, является важной задачей для исследователей феномена АЯГ, так как этим параметром определяются виды излучений в джете, физические процессы и состояние вещества в области излучения (плотность среды, степень прозрачности для различных видов излучений). Выполнив измерения ν_{peak}^{s} из наблюдений большого числа блазаров можно проверить другие эмпирические соотношения, которые используют для вычисления этого параметра при недостатке экспериментальных данных.

Сегодня многие наземные и космические телескопы проводят наблюдения АЯГ. За многие годы собран обширный наблюдательный материал в различных диапазонах излучения. Для изучения характеристик АЯГ, анализируя широкодиапазонное спектральное распределение энергии, желательно использовать одновременные экспериментальные данные во всех рассматриваемых диапазонах, что, к сожалению, не всегда возможно.

На практике наблюдаются случаи изменения ν_{peak}^s во время вспышек, это может привести к изменению классификации блазаров. Например, у объекта 4С +49.22 во время вспышки в гамма-диапазоне частота максимума синхротронной компоненты изменилась с 10^{12} Гц на 10^{14} Гц [65]. Случай этого источника может служить примером «переходного» типа блазаров в рамках актуальной упрощенной модели последних лет, в которой тип блазара и его радиосветимость не зависят от величины ν_{peak}^s , а определяются степенью активности радиогалактики (FR I или FR II) [132, 133]. Чуть менее драматичный случай изменения ν_{peak}^s отмечен у блазара PKS 1510-089, у которого примерно за неделю эта частота увеличилась с 1.5×10^{13} до 6.5×10^{13} Гц [134].

В работе [70] для примерно 300 блазаров типа BL Lac значение ν_{peak}^{s} было определено по литературным данным. Впоследствии исследователи широкодиапазонных свойств блазаров неоднократно ссылались на эту работу, но в ней широко использованы неоднородные данные из литературы (кроме данных радиодиапазона). За последние годы число блазаров с доступными наблюдательными данными сильно возросло, в то же время для объектов из этой выборки

79

появились новые измерения, уточняющие положение ν_{peak}^{s} . В этой работе приводится список кандидатов в блазары с ультра высоким значением частоты максимума синхротронной компоненты (UHBL — ultra-high energy-peaked BL Lac) ($\nu_{peak}^{s} > 10^{19}$ Гц). Эта же группа исследователей в работе [135] определила ν_{peak}^{s} для 135 блазаров.

Эмпирические соотношения определения ν_{peak}^{s} по широкодиапазонным спектральным индексам (для диапазонов радио–оптика и оптика–рентген) были выведены в работе [40] для 48 ярких блазаров из списка Ферми. В этой работе log $\nu_{peak}^{s} \sim 13$ для FSRQ-блазаров и log $\nu_{peak}^{s} \sim 15$ для BL Lac-блазаров. Для второго каталога АЯГ телескопа Ферми (2LAC), при классификации объектов по SED, использовали аналогичную аналитическую формулу определения ν_{peak}^{s} (апробированную в [40]) и получили для большинства FSRQ-блазаров значения $\nu_{peak}^{s} < 10^{14}$ Гц, а для BL Lac-блазаров $\nu_{peak}^{s} > 10^{15}$ Гц [136].

В работе [87] по одновременным наблюдениям телескопов Planck, Swift и Fermi получены широкодиапазонные кривые SED для 105 ярких блазаров ($F_{radio} > 1$ Ян) и рассчитаны значения ν_{peak}^{s} и ν_{peak}^{IC} . В результате для FSRQ блазаров определено среднее значение $\nu_{peak}^{s}=10^{13.1\pm0.1}$ Гц. Для BL Lac-блазаров это значение приходится на более высокие частоты, а распределение величины ν_{peak}^{s} более широкое. Результаты этой работы хорошо согласуются с [40].

Целью первой части работы, представленной в этой Главе, является исследование синхротронной компоненты нетеплового излучения выборки из 877 блазаров по кривым спектрального распределения энергии. Объекты систематически наблюдаются на радиотелескопе РАТАН-600. Из них — 361 блазары типа BL Lac и кандидаты, что составляет 25% от всех известных¹ блазаров этого типа; 423 — блазары FSRQ типа и 93 — блазары неопределенного типа. В работе делаются оценки максимума синхротронной компоненты объектов, полученные значения анализируются для всех типов и подклассов блазаров.

Во второй части Главы представлена работа по определению частоты максимума синхротронной компоненты SED шести блазаров, которые были нами определены как кандидаты в VLSP-блазары по неодновременным данным из литературы. Использование квазиодновременных наблюдательных данных (полученных в течение 1–3 недель) в оптическом (B, V и R фильтры) и радиодиапазоне (4.8–21.7 ГГц) позволяет достовернее определить частоту максиму-

¹согласно каталогу Roma-BZCAT, 5е издание

ма синхротронной компоненты, которая находится между этими диапазонами (в ИК/мм).

5.2 Определение частоты максимума синхротронной компоненты по кривой спектрального распределения энергии

5.2.1 Описание выборки и наблюдений

В работе изучена выборка из 877 блазаров, мониторинг которых проводится на РАТАН-600. В Таблице 5.1 представлен список объектов. Полная версия Таблицы 5.1 размещена в Центре астрономических данных в Страсбурге (CDS). В Таблице 5.1 перечислены:

(1) – имя объекта;

(2) — алиас;

(3) — красное смещение z;

(4) — звездная величина в R-фильтре (USNO);

(5) — логарифм частоты максимума синхротронной компоненты, полученный в настоящей работе; (6) — коэффициент корреляции между экспериментальными данными и теоретической кривой, используемой при расчете ν_{neak}^{s} ;

(7) — плотность потока на частоте 4.8 ГГц и его стандартная ошибка, полученные на РАТАН-600;

(8) — класс блазара по положению синхротронной компоненты на кривой SED: LSP, ISP, HSP;

(9) — тип блазара по классификации [31];

(10) — тип объекта BL Lac по диапазону обнаружения: RBL — radio-selected BL Lac, XBL – X-ray-selected BL Lac.

Таблица 5.1: Список исследуемых блазаров. Совместный результат автора, опубликован в работе [137]

имя NVSS	алиас	z	R_{mag}	$\log \nu_{peak}^s$,	k	$F_{4.8GHz} \pm \sigma,$	SED	тип	тип
				[Γ́ҵ]		Ян	класс	блазара	обнаружения
000520+052411	BZQJ0005+0524	1.900	16.2	15.17	0.90	0.126 ± 0.004	ISP	FSRQ	-
000557+382015	GB6B0003+3803	0.229	17.6	13.28	0.92	0.470 ± 0.019	LSP	FSRQ	-
000613-062335	PKS0003-066	0.347	17.9	12.93	0.95	2.118 ± 0.049	LSP	BL Lac	RBL
000649+242236	CGRaBSJ0006+2422	1.684	18.8	14.27	0.91	0.132 ± 0.012	LSP	FSRQ	-
000759+471207	BZBJ0007+4712	0.28	18.2	13.66	0.86	0.064 ± 0.005	LSP	BL Lac	RBL
001031+105830	PGC737	0.089	15.8	13.92	0.94	0.120 ± 0.005	LSP	FSRQ	-
001101-261233	PKS0008-264	1.096	18.8	13.97	0.91	0.600 ± 0.024	LSP	FSRQ	-
001354-042352	PKS0011-046	1.075	19.7	12.58	0.92	0.230 ± 0.009	LSP	FSRQ	-

Красные смещения объектов взяты из каталога Roma-BZCAT или из NED. Среднее красное смещение для FSRQ-блазаров z=1.446, для BL Lac и кандидатов z=0.443.

В Таблице 5.2 показано распределение объектов по типам. Для классификации блазаров по оптическому спектру использовался каталог блазаров Roma-BZCAT [31]:

FSRQ – квазар с плоским спектром;

BL Lac – объект типа BL Lacertae;

BL Lac.cand. — BL Lacertae кандидат;

Blazar un.type — блазар неопределенного типа.

Традиционно блазары типа BL Lacertae разделяются на подклассы: RBL (Radio-selected), OBL (optical-selected) и XBL (X-ray-selected), в зависимости от того, в каком диапазоне они были первоначально обнаружены: в радио, оптическом или рентгеновском [138–144]. Разделение BL Lac блазаров (общее число 454, включая кандидаты и блазары неопределенного типа) по типам обнаружения (RBL, XBL и OBL) проведено нами по литературным данным (см. ссылки в каталоге BLcat на сайте http://www.sao.ru/blcat/). Таблица 5.2: Классификация исследуемых блазаров. Совместный результат автора, опубликован в работе [137]

Критерии обозначения	Класс	Количество
	BL Lac	296
	BL Lac cand.	65
Оптическии спектр	Blazar un.type	93
	FSRQ	423
	RBL	327
Метод обнаружения BL Lac	XBL	124
	OBL	3
	LSP	611
SED тип	ISP	222
	HSP	42

Распределение объектов выборки по плотности потока на частоте 4.8 ГГц показано на Рисунке 5.1. Подвыборку блазаров типа FSRQ образуют яркие в радиодиапазоне объекты: средняя плотность потока на частоте 4.8 ГГц (по данным РАТАН-600) для них составляет 0.736 Ян. Подвыборку блазаров BL Lac образуют более слабые в радиодиапазоне источники, со средним значением $F_{4.8GHz}$ =0.355 Ян. В Таблице 5.3 перечислены средние значения некоторых параметров объектов выборки.

Большинство измерений BL Lac-блазаров доступны в онлайн-каталоге BLcat на странице обсерватории CAO PAH² [69]. Часть измерений FSRQблазаров, представленная в этой работе, содержит новые данные наблюдений, полученные на радиотелескопе PATAH-600 с использованием двух радиометрических комплексов в период 2014–2015 гг. Методика наблюдений и калибровки измерений описаны, например, в работах [69,90] и в пункте 2.1 данной диссертации.

²http://www.sao.ru/blcat/

Рис. 5.1: Распределение объектов выборки по плотности потока на частоте 4.8 ГГц. Три объекта (PKS B1226+023, PKS 1253-055 и PKS 1921-293) с плотностью потока $F_{4.8GHz} > 6$ Ян исключены для удобства представления. Совместный результат автора, опубликован в работе [137]

5.2.2 Расчет частоты максимума синхротронной компоненты

Измерения ν_{peak}^{s} обычно проводились по кривым распределения энергии в спектре, полученным из неодновременных наблюдательных данных. Кривые SED строились в плоскости log ν -log νF_{ν} . Синхротронная компонента может описываться полиномом второй или третьей степени:

$$log (\nu F_{\nu}) = A(log \nu)^{2} + B(log \nu) + C$$
$$log (\nu F_{\nu}) = A(log \nu)^{3} + B(log \nu)^{2} + C(log \nu) + D,$$

где А, В, С и D – коэффициенты. Отсюда:

$$\log \nu_{peak} = -B/2A.$$

Для расчета частоты максимума синхротронной компоненты мы использовали систему ASDC SED Builder Tool³ [145]. Она позволяет строить широкодиапазонный SED источника и аппроксимировать экспериментальные данные теоретической кривой. Система базируется на локальных каталогах, охватывающих широкий диапазон электромагнитного спектра: от радио до гамма-диапазона.

В настоящей работе применялся полином второй или третьей степени. Коэффициент корреляции приведен в шестой колонке Таблицы 5.1.

Из-за неоднородности наблюдательного материала определение максимума синхротронной компоненты зависит от набора используемых данных или от способа расчета. На Рисунке 5.2 приведен пример соотношения между расчетной величиной ν_{peak}^{s} , коэфициентом корреляции и числом измерений для BL Lac блазаров выборки. В цвете показано число измерений N, используемых при построении кривой SED для каждого объекта: белому цвету соответствует максимальное число измерений (N=870), черному — минимальное (N=6). Хорошо видно, что низкая корреляция теоретической кривой и экспериментальных данных наблюдается и при малом числе измерений, и при большом (700–900 точек). Это связано не только с неоднородностью измерений на отдельных частотах, но и переменностью объектов, в результате которой наблюдается большой разброс данных при использовании неодновременных измерений. И наоборот, при малом числе измерений (до 100) может наблюдаться высокая корреляция, когда несколько точек легко описываются любым полиномом.

На Рисунке 5.2 также хорошо видно, что область $10^{17} < \nu_{peak}^s < 10^{19}$ Гц отличается незначительным числом измерений (в большинстве случаев до 100). Поэтому полученные значения ν_{peak}^s для HSP-блазаров могут уточняться и расчитываться более надежно с возрастанием измерений на этих частотах.

При построении кривых SED возможно завышение значения ν_{peak}^{s} при учете теплового излучения в оптической/УФ части спектра, и в некоторых объектах такая тепловая компонента дает значительный вклад [132]. Недостаток наблюдательных данных в рентгеновском диапазоне приводит, наоборот, к занижению значения ν_{peak}^{s} .

³http://tools.asdc.asi.it

Рис. 5.2: Соотношение между расчетной величиной ν_{peak}^{s} , коэфициентом корреляции и числом измерений, используемых при построении кривых SED для BL Lac блазаров. Совместный результат автора, опубликован в работе [137]

5.2.3 Результаты

Значения u^s_{peak} блазаров выборки

Расчеты ν_{peak}^{s} произведены в системе отсчета наблюдателя. Частоты ν_{peak}^{s} получены для 875 блазаров выборки, и представлены в пятой колонке Таблицы 5.1. Для двух блазаров TEX 0537+251 и BZQ J1102+5941 значение ν_{peak}^{s} не определено из-за недостатка измерений на частотах, больше 10^{15} Гц. Распределение величин ν_{peak}^{s} для FSRQ- и BL Lac-блазаров представлено на Рисунке 5.3.

Средние значения параметров z, log ν_{peak}^{s} , $F_{4.8GHz}$ и R_{mag} приведены в Таблице 5.3.

Рис. 5.3: Распределение величины ν_{peak}^s для FSRQ-, BL Lac-блазаров и блазаров неопределенного типа. Совместный результат автора, опубликован в работе [137]

Таблица 5.3: Средние значения некоторых параметров для различных подклассов блазаров (число измерений указано в нижнем индексе). Совместный результат автора, опубликован в работе [137]

Тип	\overline{z}	$\log \nu_{peak},$	$F_{4.8GHz}$,	R_{mag}
блазара		Гц	Ян	
FSRQ	1.446_{422}	$13.4 \pm 1.0_{422}$	0.736_{423}	18.6423
BL Lac	0.443_{253}	$14.6 \pm 1.4_{360}$	0.355_{359}	17.3 ₃₅₈
Blazar un.type	0.499_{86}	$13.9 \pm 1.1_{93}$	0.739_{93}	17.2_{92}
RBL	0.53 ₂₃₄	$13.9 \pm 0.9_{326}$	0.624 ₃₂₉	14.3_{325}
XBL	0.30_{102}	$15.9 \pm 1.3_{124}$	0.089_{123}	16.7 ₁₂₃

Принадлежность выборок ν_{peak}^s и $F_{4.8GHz}$ для FSRQ, BL Lac, RBL и XBL одному закону распределения проверялась с помощью теста Колмогорова-

Смирнова (К-С), согласно которому, эти распределения сильно различаются (по уровню значимости 0.05).

Соотношения $\nu_{peak}^{s} - F_{4.8GHz}$ для блазаров класса FSRQ и BL Lac показаны на Рисунке 5.4. Спектральная плотность потока блазаров, полученная на РАТАН-600 на частоте 4.8 ГГц, представлена в Таблице 5.1 (колонка 7). Распределение ν_{peak}^{s} для BL Lac и кандидатов более широкое со средним значением $10^{14.6\pm1.4}$ Гц ($10^{11.9}-10^{18.9}$ Гц). Распределение ν_{peak}^{s} для FSRQ имеет среднее значение $10^{13.4\pm1.0}$ Гц и большинство значений расположены в области от $10^{11.9}$ до $10^{16.5}$ Гц.

Рис. 5.4: Соотношение между ν_{peak}^s и плотностью потока на частоте 4.8 ГГц для FSRQ- и BL Lac-блазаров. Среднее значение ν_{peak}^s для FSRQ равно $10^{13.4\pm1.0}$ Гц, для BL Lac и кандидатов — $10^{14.6\pm1.4}$ Гц. Совместный результат автора, опубликован в работе [137]

RBL И XBL объекты

Классификация BL Lac по типу RBL и XBL проведена с использованием литературных данных и представлена в Таблице 5.1 (колонка 10). Выборку образуют 327 блазара RBL, 124 XBL и 3 OBL. Соотношения $\nu_{peak}^{s}-F_{4.8GHz}$ для RBL и XBL

объектов представлены на Рисунке 5.5. В среднем, значение ν_{peak}^s для RBL меньше, чем для XBL. Среднее значение распределения ν_{peak}^s для RBL составляет $10^{13.9\pm0.9}$ Гц, для XBL — $10^{15.9\pm1.3}$ Гц.

Распределения пиковых частот для XBL более широкое ($10^{13.2}$ – $10^{18.9}$ Гц), чем для RBL ($10^{11.9}$ – $10^{16.3}$ Гц). Средние значения плотности потоков $F_{4.8GHz}$ для XBL и RBL отличаются значительно (см. Таблицу 5.3).

Рис. 5.5: Соотношение $\nu_{peak}^{s} - F_{4.8GHz}$ для XBL (слева) и RBL (справа) объектов. Средние значения ν_{peak}^{s} для них равны $10^{13.9\pm0.9}$ и $10^{15.9\pm1.3}$ Гц соответственно. Совместный результат автора, опубликован в работе [137]

Кандидаты в UHBL-блазары

Максимальная частота ν_{peak}^{s} в настоящей выборке измерено для объектов 1ES 0229+200 ($10^{18.5}$ Гц), 1ES 0502+675 ($10^{18.9}$ Гц) и RXS J1458.4+4832 ($10^{18.8}$ Гц). В Таблице 5.4 представлен список блазаров, которые в работе [70] рассматривались как кандидаты в UHBL (ultra-high energy-peaked BL Lacertae). К ним были отнесены блазары со значениями пиков синхротронных компонент $\nu_{peak}^{s} > 10^{19}$ Гц. Первая колонка — имя объекта. Вторая и третья колонка таб-

лицы 5.4 представляют измерения log ν_{peak}^{s} , проведенные в [70] и настоящей работе, соответственно. Четвертая колонка — плотность потока на частоте 4.8 ГГц и ее ошибка, полученные на РАТАН-600. Пятая колонка содержит значение амплитуды переменности объекта (в %) на частоте 4.8 ГГц и число измерений, оно указано в нижнем индексе (по данным РАТАН-600). Амплитуда переменности определялась по формуле 2.2. Шестая колонка — тип BL Lac по диапазону обнаружения, взятый из литературы. Все объекты, перечисленные в Таблице 5.4 относятся к XBL представителям BL Lac. Как правило, этот список составляют неяркие в радиодипазоне объекты, с плотностью потока, не превышающей 100 мЯн на частоте 4.8 ГГц (колонка 4 Таблицы 5.4). Почти все объекты достаточно переменны в радиодиапазоне — амплитуда переменности от нескольких до десятков процентов. Некоторые из них наблюдались недостаточно — 3-5 раз. В других диапазонах они также измерялись мало. Вероятно, будучи исторически обнаруженными в рентгеновском диапазоне, они больше измерялись в этой области спектра, и поэтому стали кандидатами в UHBL-блазары. В нашей выборке не обнаружено кандидатов в UHBL по классификации $\nu_{peak}^s > 10^{19}$ Гц.

Кандидаты в VLSP-блазары

Кроме разделения блазаров на высоко- и низкочастотные (HSP и LSP) существует группа объектов с очень низкой частотой максимума синхротронной компоненты ($\nu_{peak}^{s} < 10^{13}$ Гц), их называют очень никочастотными (very low synchrotron peaked — VLSP) [131, 146]. Максимум синхротронной компоненты в них приходися на ИК/мм диапазон спектра.

В работе [147] описана связь между максимальной энергией электронов γ_{peak} и плотностью общей энергий $(U_{ph} + U_B)$, где U_{ph} — плотность энергии фотонов и U_B — плотность энергии магнитного поля в джете:

$$\gamma_{peak} \sim (U_{ph} + U_B)^{-0.6}.$$

Если предполагать, что суммарная плотность энергии U=L/R², где L — светимость джета, R — его размер, а пиковая частота синхротронной компоненты $\nu_{peak}^{s} \propto \gamma_{peak}^{2}$, то объекты высокой светимости имеют более низкую пиковую частоту. Поэтому объекты с очень низким значением ν_{peak}^{s} часто являются достаточно яркими радиоисточниками. Действительно, в нашей выборке VLSP-

Таблица 5.4: Кандидаты в UHBL-блазары (log $\nu_{peak}^s > 19$) из работы [70]. Величины log ν_{peak}^s представлены за 2006 г. (из работы [70]) и за 2015 г. (результаты настоящей работы, подписаны RATAN). В колонках (4) и (5) представлено значение плотности потока с ошибкой и амплитуда переменности, полученные на частоте 4.8 ГГц на РАТАН-600. Совместный результат автора, опубликован в работе [137]

Имя	$\log \nu_{neak}^s$,	$\log \nu_{neak}^s$,	$F_{4.8 GHz}$,	Var $F_{4.8_N}$,	тип
	[70]	PATAH	Ян	%	обнаружения
1ES 0229+200	19.45	18.50	0.049 ± 0.003	7.5_{5}	XBL
RXS J0314.3+0620	19.57	16.13	0.038 ± 0.005	1.5_{5}	XBL
2E0323+0214	19.87	15.92	0.041 ± 0.003	17.1_{7}	XBL
2E0414+0057	20.71	16.78	0.065 ± 0.002	22.0_7	XBL
1ES 0502+675	19.18	18.88	0.038 ± 0.005	18.4_{6}	XBL
EXO 0706.1+5913	21.05	17.88	0.087 ± 0.011	1.8_{6}	XBL
RXS J0847.2+1133	19.13	17.40	0.024 ± 0.004	_	XBL
1ES 0927+500	21.13	17.40	0.084 ± 0.019	56.6_{5}	XBL
RXS J1008.1+4705	19.67	17.33	0.009 ± 0.003	76.5_3	XBL
RXS J1012.7+4229	20.97	17.46	0.055 ± 0.004	13.8_{8}	XBL
EXO 1149.9+2455	19.83	16.72	0.026 ± 0.003	12.2_3	XBL
PG 1218+304	19.14	16.86	0.055 ± 0.003	8.3_{5}	XBL
RXS J1319.5+1405	19.67	15.15	0.055 ± 0.005	12.4_5	XBL
RXS J1341.0+3959	20.97	14.59	0.048 ± 0.003	8.2_{6}	XBL
RXS J1353.4+5601	19.67	15.92	0.019 ± 0.008	_	XBL
RXS J1410.5+6100	20.97	14.44	0.040 ± 0.011	_	XBL
2E1415+2557	19.24	17.54	0.046 ± 0.005	_	XBL
RXS J1456.0+5048	19.94	16.22	0.082 ± 0.018	7.6_{5}	XBL
RXS J1458.4+4832	21.46	18.83	0.005 ± 0.002	_	XBL
1ES 1533+535	19.68	16.72	0.047 ± 0.009	14.6_5	XBL
RXS J1756.2+5522	19.90	17.27	0.043 ± 0.012	19.1_{5}	XBL
RXS J2304.6+3705	21.01	17.53	0.020 ± 0.003	9.5_{8}	XBL

кандидатов — большинство FSRQ-блазары — 41% (от общего числа FSRQ) и только 9% — BL Lac-блазары.

В настоящее время исследования таких объектов не носят систематический характер и нет результатов, основанных на изучении массовых списков.

5.2.4 Обсуждение результатов

Результаты, полученные в настоящей работе, подтверждают результаты других авторов, сделанные по выборкам со значительно меньшим числом объектов, например:

– измерения синхротронной компоненты 300 объектов типа BL Lac в работе [70] по неодновременным литературным данным. Для большинства объектов значение ν_{peak}^{s} составляет 10^{13-14} Гц.

– измерения синхротронной компоненты 105 ярких блазаров по одновременным измерениям телескопов Planck, Swift и Fermi [87], среднее значение ν_{neak}^{s} для FSRQ-блазаров составило $10^{13.1\pm0.1}$ Гц.

– измерения синхротронной компоненты с использованием широкодиапазонных спектральных индексов α_{ro} и α_{ox} (между частотами 5 ГГц, 5000 Å и 1 keV) в работах [40,136] дали для FSRQ ν_{peak}^{s} =10^{13.02±0.35} Гц и широкое распределение для BL Lac — от самых низких до высоких частот.

В настоящем исследовании большинство объектов имеют $\nu_{peak}^{s} \sim 10^{13-14}$ Гц. HSP блазары достаточно редки в выборке — 5% от общего числа, в основном это лацертиды (BL Lac).

В работе не подтвердились экстремальные значения ν_{peak}^{s} (> 10^{19} Гц) для 22 объектов из списка кандидатов UHBL [70]. Легко заметить, что при наличии нескольких точек на кривой SED, часто можно переоценить значение ν_{peak}^{s} , особенно, если BL Lac был обнаружен в высокочастотном диапазоне спектра. Это справедливо для нашей выборки — все кандидаты в UHBL — XBL блазары.

Распределение ν_{peak}^{s} для FSRQ и BL Lac носят разный характер, что иногда интепретируется в рамках разной морфологии объектов и возможной эволюции FSRQ в BL Lac [20].

5.3 Многоволновые квазиодновременные наблюдения шести блазаров с низкочастотным максимумом синхротронной компоненты

5.3.1 Выборка VLSP-блазаров

В последние годы на радиотелескопе РАТАН-600 ведется систематический мониторинг блазаров, создан и пополняется каталог объектов типа BL Lacertae, наблюдающихся на РАТАН-600 [69]. На основе этого списка была создана выборка блазаров для оптического мониторинга на телескопе Цейсс-1000 в 2014 году. Среди источников этой выборки есть шесть, которые можно отнести к VLSP подклассу. Предварительная оценка ν_{peak}^{s} проводилась нами с использованием веб-инструмента ASDC SED Builder Tool, разработанного для построения и анализа SED блазаров по архивным данным различных обзоров во всех диапазонах частот (от радио до гамма). На странице веб-сервиса SED Builder имеется встроенная возможность аппроксимации данных полиномом и вычисления необходимого нам параметра ν_{peak}^{s} . Исследуемая выборка представлена в Таблице 5.5, где указаны экваториальные координаты (на эпоху 2000.0), красное смещение⁴ и предварительно оцененная нами частота максимума синхротронной компоненты ν_{peak}^{s} .

Таблица 5.5: Выборка исследуемых	VLSP-кандидатов.	Совместный результат ав-
тора, опубликован в работе [148]		

Объект	RA (2000.0)	DEC (2000.0)	z	$\log \nu_{peak}^s$
PKS 0336-01	03h39m30.9s	-01d46m36s	0.852	12.68
PKS 0446+11	04h49m07.7s	+11d21m29s	1.207	12.80
PKS 0528+134	05h30m56.4s	+13d31m55s	2.06	11.96
[HB89] 1308+326	13h10h28.6s	+32d20m44s	0.998	12.68
3C 345	16h42m58.8s	+39d48m37s	0.592	12.78
PKS 2230+11	22h32m36.4s	+11d43m51s	1.037	12.86

5.3.2 Наблюдения и обработка

Радиодиапазон

В нашей работе мы использовали наблюдения, проведенные на радиотелескопе РАТАН-600 в феврале, марте, июле и декабре 2014 года. Каждый источник наблюдался от пяти до двенадцати раз на каждой частоте (4.8, 7.7, 11.2 и 21.7 ГГц). Описание методики наблюдений и обработки на РАТАН-600 с использованием штатного комплекса радиометров можно найти в работе [90] и в пункте 2.1 данной диссертации. Наблюдательные данные обработаны с помощью штатного пакета FADPS [59]. Стандартные ошибки определения плотности потока для этих данных равны: на частотах 4.8 и 7.7 ГГц — 3–5%, на частоте 11.2 ГГц — 4– 10%, на частоте 21.7 ГГц — 10–14%. Средние значения измеренных плотностей потока для исследуемых блазаров приведены в Таблице 5.6.

⁴данные из NED

Таблица 5.6: Значения плотностей потоков на четырех радиочастотах для исследуемых объектов. Совместный результат автора, опубликован в работе [148]

Объект	Дата	<i>F</i> _{21.7<i>GHz</i>} , Ян	<i>F</i> _{11.2<i>GHz</i>} , Ян	<i>F</i> _{7.7<i>GHz</i>} , Ян	<i>F</i> _{4.8<i>GHz</i>} , Ян
PKS 0336-01	7-12 декабрь	1.570 ± 0.194	1.860 ± 0.180	-	2.23 ± 0.096
PKS 0446+11	12 февраль – 8 март	0.634 ± 0.078	0.782 ± 0.031	-	0.694 ± 0.021
PKS 0528+134	12 февраль – 8 март	0.811 ± 0.116	1.193 ± 0.048	-	1.424 ± 0.043
[HB89]1308+326	27–31 май	1.74 ± 0.07	2.14 ± 0.11	2.14 ± 0.11	1.92 ± 0.23
3C 345	7–12 июль	5.669 ± 0.538	5.704 ± 0.285	-	5.846 ± 0.234
PKS 2230+11	7-12 декабрь	2.571 ± 0.315	3.260 ± 0.241	-	4.207 ± 0.181

Оптический диапазон

Фотометрические наблюдения проводились на 1-м телескопе Цейсс-1000 САО РАН в фильтрах B, V (системы Джонсона), R (системы Коузинса) в феврале, мае, июле и ноябре 2014 года. Использовался штатный ССD-приемник EEV 42-40 (2048 × 2048 пикселей) с азотным охлаждением. Получены три изображения исследуемых объектов в каждом фильтре, продолжительность экспозиции составила от 30 до 300 с, в зависимости от яркости источника. Средний размер звездных изображений составил около 2-3'' при хороших астроклиматических условиях. Все необходимые процедуры обработки производились с применением стандартных процедур в программе MaxImDL. В качестве объектов сравнения были выбраны звезды близкого цвета и яркости, расположенные в поле ПЗС-матрицы. Межзвездная экстинкция, таким образом, была одинаковой для опорного и исследуемого объекта и не требовала дополнительного учета. Средние значения стандартной ошибки определения звездной величины составили: в фильтре B - 0.8%, в фильтре V - 0.7%, в фильтре R - 0.4%. Для прехода из звездных величин в плотности потока использовалась стандартная формула:

$$m_1 - m_2 = -2.5 \log \frac{f_1}{f_2}$$

Здесь m_1, m_2 — звездные величины исследуемого и калибровочного объектов, f_1, f_2 — их плотности потока, соответственно. Если взять калибровочную плотность потока (f_0), при которой звездная величина равна нулю (m = 0), т.е. записать

$$m_2 = 0, f_2 = f_0,$$

тогда получим

$$m_1 = -2.5 \log \frac{f_1}{f_0}$$

и искомая плотность потока

$$f_1 = 10^{\frac{-m_1}{2.5}} f_0.$$

Значения f_0 взяты из работы Бесселя [149] и представлены в Таблице 5.7 для каждого фильтра. Результаты фотометрии исследуемых объектов приведены в Таблице 5.8.

Таблица 5.7: Параметры фильтров и калибровочные значения плотности потока из [149]. Совместный результат автора, опубликован в работе [148]

Фильтр	λ , нм	u, Гц	<i>f</i> ₀ , Ян
В	440	6.81×10^{14}	4260
V	550	5.45×10^{14}	3640
R	640	4.68×10^{14}	3080

Таблица 5.8: Звездные величины и соответствующие значения плотностей потока в различных фильтрах для исследуемых объектов. Совместный результат автора, опубликован в работе [148]

Объект	Дата	B, mag	V, mag	R, mag	В, мЯн	V, мЯн	R, мЯн
PKS 0336-01	19 ноябрь	17.65 ± 0.12	17.54 ± 0.09	17.21 ± 0.05	0.36 ± 0.0025	0.364 ± 0.0018	0.384 ± 0.0012
PKS 0446+11	2 февраль	18.14 ± 0.15	18.16 ± 0.13	18.61 ± 0.10	0.229 ± 0.0019	0.206 ± 0.0015	0.106 ± 0.0006
PKS 0528+134	2 февраль	-	-	19.27 ± 0.08	-	-	0.0576 ± 0.0002
[HB89]1308+326	28 май	18.64 ± 0.09	18.33 ± 0.12	17.70 ± 0.05	0.145 ± 0.0007	0.176 ± 0.001	0.245 ± 0.0007
3C 345	24 июль	18.37 ± 0.26	18.18 ± 0.20	17.76 ± 0.07	0.185 ± 0.0026	0.202 ± 0.0023	0.231 ± 0.0009
PKS 2230+11	19 ноябрь	17.39 ± 0.10	16.78 ± 0.07	16.50 ± 0.06	0.457 ± 0.0025	0.734 ± 0.0031	0.739 ± 0.0026

5.3.3 Результаты

Результаты наблюдений в радио- и оптическом диапазоне (плотности потока и звездные величины) приведены в Таблице 5.6 и Таблице 5.8. Использовав измерения РАТАН-600 и Цейсс-1000, мы построили спектральное распределение энергии шести исследуемых блазаров (показаны на Рисунке 5.6).

Излучение блазаров в диапазоне от радио до оптического (иногда и до рентгеновского) определяется синхротронным механизмом излучения релятивистских частиц в магнитном поле [21–24]. Широкодиапазонный спектр на этом участке, с доминирующим синхротронным излучением, имеет степенной вид [105]; в исследованиях синхротронной компоненты для ее описания (например, нахождения экстремума) используют полином второй или третьей степени [40, 70, 86, 100, 150].

При аппроксимации SED на участке $10^8 - 10^{15}$ Гц (синхротронная компонента) мы использовали полином второй степени — параболу:

$$\log (\nu F) = A + B(\log \nu) + C(\log \nu)^2.$$

Для оценки частоты максимума синхротронной компоненты SED использовалось программное обеспечение для анализа данных и построения графиков OriginLab. Результаты измерения ν_{peak}^{s} для исследуемых блазаров представлены в Таблице 5.9. Далее приводятся комментарии по каждому из рассмотренных источников.

Таблица 5.9: Результаты измерения ν_{peak}^s для исследуемых блазаров (подписаны CAO), приведены также оценки по архивным данным (подписаны архивный). Знаком + отмечены блазары, подтвержденные нами как VLSP. Совместный результат автора, опубликован в работе [148]

Объект	$\log \nu_{peak}^{s}$, архивный	$\log \nu_{peak}^{s}$, CAO	VLSP
PKS 0336-01	12.68	13.45	-
PKS 0446+11	12.80	13.47	-
PKS 0528+134	11.96	12.66	+
[HB89] 1308+326	12.68	12.77	+
3C 345	12.78	12.55	+
PKS 2230+11	12.86	13.46	-

РКS 0336-01. Этот объект относят к квазарам с плоским радиоспектром (Flat-Spectrum Radio Quasar, FSRQ) [103], с доминирующим радиоядром. Судя по кривой блеска этого объекта, представленой на сайте виртуальной обсерватории СПбГУ⁵, наблюдались изменения звездной величины в R-фильтре в конце 2014 года: с ~15.7 до ~17.2. В октябре этого же года была зафиксирована вспышка в гамма-диапазоне [151], но в оптическом диапазоне в этот же период активности не было [152]. Спустя несколько недель в ближнем ИК-диапазоне было отмечено резкое поярчание этого объекта [153]. По данным мониторинга обсерватории Owens Valley Radio Observatory (OVRO)⁶, в конце 2014 года плотность потока была относительно стабильной на 15 ГГц (~2.4 Ян).

⁵http://lacerta.astro.spbu.ru/

⁶http://www.astro.caltech.edu/ovroblazars/data/data.php

Наши наблюдения в оптическом диапазоне проводились 19 ноября 2014 года, наблюдения в радиодиапазоне — с 7 по 12 декабря 2014 года. При аппроксимации спектра параболой мы определили log $\nu_{peak}^s = 13.45$ (4 точки, reduced chi-square $\chi^2 = 0.0058$), что несколько больше оцененной по архивным данным log $\nu_{peak}^s = 12.68$.

РКЅ 0446+11. В каталоге Верон-Сетти и Верона объект классифицируется как типа BL Lacertae [28]. Оптический спектр практически без линий [154], радиоспектр плоский [103]. По данным мониторинга OVRO, в радиодиапазоне в начале 2014 года наблюдалось очередное повышения активности. Отметим, что характерным для PKS 0446+11 является достаточно медленный подъем (и угасание) на кривой блеска в радиодиапазоне во время активности, максимум достигается примерно на временном масштабе порядка года. В течение 1–2 недель изменение плотности потока не превышает 10%.

Наши наблюдения в оптическом диапазоне проводились 2 февраля 2014 года, наблюдения в радиодиапазоне проводились с 12 февраля по 8 марта 2014 года. Из построенного SED видно (см. Рисунок 5.6), что положения точек в оптическом диапазоне повлияло на вписывание кривой аппроксимации, таким образом, что максимум оказался выше ожидаемой величины. По архивным данным, используя веб-сервис SED Builder, получено log $\nu_{peak}^s = 12.80$. Используя собственные измерения мы определили log $\nu_{peak}^s = 13.47$ (6 точек, $\chi^2 = 0.055$).

PKS 0528+134. У этого блазара наблюдается джет в радиодиапазоне [155], в литературе классифицируется как FSRQ [103].

Наблюдения в оптическом диапазоне проводились 2 февраля, а в радиодиапазоне — с 12 февраля по 8 марта 2014 года. Объект удалось наблюдать только в R-фильтре (3 экспозиции по 300 сек), в остальных фильтрах за время 600 сек не удалось накопить достаточное число фотонов для оценки звездной величины. В ноябре также делалась попытка фотометрии этого источника, но он по-прежнему находился в слабом состоянии (слабее 19 звездной величины в R-фильтре).

При аппроксимации спектра параболой мы определили log $\nu_{peak}^s = 12.66$ (4 точки, $\chi^2 = 0.0015$). По архивным данным log $\nu_{peak}^s = 11.96$.

[HB89] 1308+326. Объект типа BL Lacertae, со слабыми эмиссионными линиями, родительская галактика не обнаруживается [156,157]. В середине апреля 2014 года отмечена сильная вспышка в гамма-диапазоне [158], но последующее наблюдение в оптическом диапазоне не выявило отличия от обычного сосотояния [159]. В первой половине 2014 года состояние объекта можно считать активным в радиодиапазоне (по данным мониторинга OVRO плотность потока на 15 ГГц \sim 0.5 Ян).

Наблюдения в оптическом диапазоне проводились 28 мая 2014 года. Наблюдения в радиодиапазоне проводились пять раз с 27 по 31 мая 2014 года. Нами получено значение log $\nu_{peak}^s = 12.77$ (7 точек, $\chi^2 = 0.0017$), что хорошо согласуется с результатом определения по архивным данным — log $\nu_{peak}^s = 12.68$.

3С 345. Этот объект относят к FSRQ-блазарам [103], с доминирующим радиоядром [160]. В оптическом диапазоне в 2014 году этот блазар находился в спокойном состоянии, чуть ярче 18 звездной величины в R-фильтре (данные с сайта виртуальной обсерватории СПбГУ), в радиодиапазоне продолжилось небольшое понижение яркости, начавшееся в 2013 году — с ~6 до ~5 Ян (мониторинг OVRO).

Наблюдения в оптическом диапазоне проводились 24 июля 2014 года, наблюдения в радиодиапазоне проводились за две недели до этого, с 7 по 12 июля 2014 года. При аппроксимации спектра параболой мы определили log $\nu_{peak}^{s} =$ 12.55 (4 точки, $\chi^{2} = 0.0071$). По архивным данным log $\nu_{peak}^{s} =$ 12.78. Второй случай в нашей выборке, когда оцененное по нашим квазиодновременным данным значение очень близко (и даже чуть меньше) к определенному по архивным данным.

РКS 2230+11. По наблюдательным проявлениям классифицируется как типичный блазар [161] и как квазар с сильной поляризацией в оптическом диапазоне (>3%) [28]; наблюдается джет в радиодиапазоне [155]. При проведении многоволнового мониторинга 2005 года было отмечено существенное изменение вида SED этого блазара во время вспышки [161]. Из SED в этой работе можно визуально оценить, что величина ν_{peak}^{s} уменьшилась примерно на порядок, по мере распространения активности в низкочастотную область спектра. Судя по кривой блеска этого объекта, представленой на сайте виртуальной обсерватории СПбГУ, в конце 2014 года была небольшая вспышка в оптическом диапазоне — поярчание примерно на одну звездную величину в R-фильтре (в сравнении со спокойным состоянием в середине года). Возможно, такая активность связана со вспышкой в гамма-диапазоне, отмеченной в это же время года (в конце октября) [162]. Наши наблюдения в оптическом диапазоне проводились 19 ноября 2014 года, наблюдения в радиодиапазоне проводились спустя три недели, с 7 по 12 декабря 2014 года. При аппроксимации спектра параболой мы определили $\log \nu_{peak}^s = 13.46$ (4 точки, $\chi^2 = 0.0015$). По архивным данным $\log \nu_{peak}^s = 12.86$.

5.4 Заключение

В работе, представленной в первой части данной Главы, исследовалась синхротронная компонента в спектральном распределении энергии различных типов и подклассов блазаров. Общее число объектов выборки — 877. Оценивается основной параметр — частота максимума синхротронного излучения ν_{peak}^{s} . Для этого используются неодновременные архивные данные каталога блазаров Roma-BZCAT и инструмент ASDC SED Builder Tool. В результате:

- Значения *v*^s_{peak} определены для 875 объектов. Проведена классификация блазаров выборки по типу SED: 611 (70%) LSP блазаров, 222 (25%) ISP и 42 (5%) HSP блазара. При недостатке измерений в широком диапазоне частот или в случае переменного объекта в разных состояниях активности оценки величины *v*^s_{peak} сильно зависят от выбора данных, диапазона и полинома.
- Распределение величины
 *ν*_{peak}^s гладко понижается в сторону высоких частот (Рисунок 5.3). В выборке обнаружено всего 5% HSP блазаров, в основном это BL Lac блазары. Возможно, объекты, в которых электроны ускоряются до очень высоких энергий, редки или сказывается эффект селекции при формировании выборки.
- Распределения величины ν_{peak}^s для двух подгрупп блазаров (FSRQ и BL Lac) носят различный характер. Для BL Lac и кандидатов оно шире и смещено в более высокочастотную область среднее значение $10^{14.6\pm1.4}$ Гц. Для FSRQ блазаров среднее значение равно $10^{13.4\pm1.0}$ Гц. Статистические тесты на принадлежность выборок блазаров FSRQ и BL Lac одному закону распределения показали, что величины ν_{peak}^s и спектральная плотность потока $F_{4.8GHz}$ образуют разные распределения.

- Для двух типов объектов BL Lac RBL и XBL распределения величин *v*^s_{peak} и *F*_{4.8GHz} также образуют разные распределения (по уровню значимости 0.05). Среднее значение *v*^s_{peak} для RBL составляет 10^{13.9±0.9} Гц, для XBL 10^{15.9±1.3} Гц.
- Для 22 кандидатов в UHBL-блазары получены новые оценки *v*^s_{peak}. Обнаружено, что среди них нет объектов с *v*^s_{peak} > 10¹⁹ Гц. Вероятно, основное число измерений в области рентгеновского диапазона, где все они были обнаружены, явилось причиной больших значений *v*^s_{peak} в работе [70], где эти блазары были классифицированы как UHBL. По данным, собранным в каталоге [31], эти объекты в большинстве относятся к HSP и частично к ISP блазарам.
- В выборке выявлены кандидаты в VLSP-блазары с $\nu_{peak}^s < 10^{13}$ Гц. В большинстве это FSRQ блазары 41% от общего их числа и только 9% BL Lac объекты.

Во второй части Главы представлены новые наблюдательные данные в радио- и оптическом диапазоне для шести блазаров, которые по архивным неодновременным данным относятся к VLSP типу ($\nu_{peak}^s < 10^{13}$ Гц). Мы оценили значение параметра ν_{peak}^s по квазиодновременным наблюдениям телескопов Цейсс-1000 и РАТАН-600, разница в наблюдательных эпохах составила не более 2–3 недель. В результате, для источников PKS 0446+11, [HB89] 1308+326 и 3C 345 подтвердилась их классификация по ν_{peak}^s как VLSP. Для остальных трех блазаров (PKS 0336-01, PKS 0446+11 и PKS 2230+11), наши расчеты показали $\nu_{peak}^s > 10^{13}$ Гц. Мы получили очень близкое к оцененному по архивным данным значение ν_{peak}^s для [HB89] 1308+326 и 3C 345. Результаты данной Главы опубликованы в совместных с диссертантом работах [137, 148].

Рис. 5.6: Спектральное распределение энергии исследуемых блазаров по данным Цейсс-1000 и РАТАН-600 и аппроксимация синхротронной компоненты параболой. Совместный результат автора, опубликован в работе [148]

Заключение

Основные результаты диссертационной работы:

- Получен многочастотный массив наблюдательных данных в радиодиапазоне, на двух комплексах радиометров (размещенных в приемных кабинах №1 и №2) радиотелескопа РАТАН-600 измерения плотности потока на частотах 2.3, 4.8, 7.7, 11.2 и 21.7 ГГц для исследования различных выборок блазаров.
- Создан каталог представителей редкого подкласса АЯГ лацертид, основанный на литературных данных и наблюдениях на РАТАН-600. Радиоспектры, значения плотностей потоков и кривые блеска блазаров представлены в каталоге BLcat; на конец 2014 года в нем содержится чуть более 300 источников. ВLcat может быть использован для статистического изучения радиосвойств блазаров, для исследования поведения различных подклассов этих объектов в радиодиапазоне. Отличительной особенностью представленных наблюдательных данных является использование одного инструмента для получения квазиодновременных многочастотных измерений. Измерения плотностей потоков представлены в удобном формате, доступен интерактивный просмотр и экспорт данных. Список блазаров периодически дополняется и обновляется как архивными, так и новыми наблюдательными данными.
- Проведены фотометрические измерения в трех фильтрах *B*, *V*, *R* шести блазаров (PKS 0336-01, PKS 0446+11, PKS 0528+134, [HB89] 1308+326, 3C 345, PKS 2230+11).
- Результаты анализа взаимосвязи излучений в джете и аккреционном диске блазаров, проведенного с использованием данных РАТАН-600 и доступных литературных данных. Показано, что состояние лацертид в радиодиапазоне

(активное или спокойное) влияет на величину коэффициента корреляции потока в радиодиапазоне и потока от области образования широких линий.

Анализ корреляции излучения в радио- и гамма-диапазоне, при использовании квазиодновременных наблюдательных данных телескопов РАТАН-600 и Fermi-LAT, выявил значимую корреляцию для обоих подклассов блазаров — лацертид и квазаров с плоским спектром, для всех пяти рассмотренных радиочастот (2.3–21.7 ГГц) и двух гамма полос (0.1–1 ГэВ).

В среднем, коэффициент корреляции выше у лацертид. Этот результат говорит в пользу тесной взаимосвязи гамма- и радиоизлучения и образования их из одной популяции фотонов. Полученные результаты служат подтверждением синхрокомптоновского механизма излучения в блазарах (особенно для лацертид).

Выявлено, что коэффициент корреляции излучения в радио- и гаммадиапазоне чувствителен к рассматриваемой частоте для квазаров с плоским спектром. Корреляция с излучением в гамма-диапазоне заметно выше для 21.7 ГГц, чем для 2.3 ГГц.

- Результаты оценки значения частоты максимума синхротронной компоненты (*v*^s_{peak}) спектрального распределения энергии (SED) для выборки 875 блазаров из наблюдательного списка РАТАН-600 по неодновременным литературным данным. На основе этого проведена классификация блазаров выборки по типу SED и найдено различие в распределении этого параметра для двух подклассов блазаров лацертид и квазаров с плоским спектром.
- По результатам квазиодновременных наблюдений в оптическом и радиодиапазоне шести объектов — блазаров с очень низкочастотным максимумом синхротронного излучения (VLSP) — определено значение ν^s_{peak} для них и подтверждена классификация как VLSP трех из них.

Автор выражает благодарность **Я. Найдену** за помощь при написании статьи [121], **В. Столярову** за помощь при написании текстов в англоязычные журналы, **О. Спиридоновой**, **М. Габдееву**, **А. Москвитину** за помощь при проведении наблюдений на Цейсс-1000 и **С. Трушкину** за полезные замечания при подготовке статьи [121]. Диссертант также благодарен всем рецензентам статей, написанных при его участии в различные журналы за время обучения в аспирантуре, за полезные замечания, комментарии, советы и кропотливый труд. Отдельную признателность автор выражает **Ю. Сотниковой** за постоянную и разностороннюю поддержку в ходе выполнения исследования, за помощь в проведении наблюдений на радиотелескопе РАТАН-600 и за множество ценных комментариев при подготовке диссертации. Кроме того, автор благодарен всему **персоналу** и группе обеспечения наблюдений РАТАН-600, без непосредственного участия которых невозможно получение обширного наблюдательного материала, на котором основана данная диссертационная работа. Наконец, автор выражает признательность своему научному руководителю Марату Габдулловичу Мингалиеву за многолетний труд и большой вклад в образование диссертанта.

Терминология и сокращения

АЯГ — Активные ядра галактик или активные галактические ядра;

Джет — Узконаправленный пучок частиц с высокой энергией (от англ. jet – струя);

ИК — Инфракрасный;

УФ – Ультрафиолетовый;

BLR – (Broad line region) Область широких спектральных линий;

BL Lac – (BL Lacertae type object) Объект типа BL Ящерицы;

BLO – (BL Lacertae type object) Объект типа BL Ящерицы;

FSRQ – (Flat spectrum radio quasars) Квазар с плоским радиоспектром;

HSP — (High synchrotron-peaked) Блазары с высокочастотным максимумом синхротронного излучения;

ISP – (Intermediate synchrotron-peaked) Блазары с максимумом синхротронного излучения на промежуточных частотах;

LSP – (Low synchrotron-peaked) Блазары с низкочастотным максимумом синхротронного излучения;

NLR – (Narrow line region) Область узких спектральных линий;

OBL – (Optically selected BL Lac) BL Lac, отождествленный в оптическом обзоре;

RBL – (Radio selected BL Lac) BL Lac, обнаруженный в радиообзоре;

SED – (Spectral energy distribution) Спектральное распределение энергии;

SSC — (Synchrotron self Compton) Синхрокомптоновский механизм излучения;

VLSP – (Very low synchrotron peaked) Блазары с очень низкочастотным максимумом синхротронного излучения;

XBL – (X-ray selected BL Lac) BL Lac, обнаруженный в рентгеновском обзоре.

Литература

- 1. C. K. Seyfert, Astrophys. J. 97, 28 (1943).
- J. A. Peacock, L. Miller, and M. S. Longair, Monthly Notices Royal Astron. Soc. 218, 265 (1986).
- 3. K. I. Kellermann, R. Sramek, M. Schmidt, et al., Astron. J. 98, 1195 (1989).
- V. Beckmann and C. Shrader, in Proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" - 9th INTEGRAL Workshop and celebration of the 10th anniversary of the launch (INTEGRAL 2012). 15-19 October 2012. Bibliotheque Nationale de France, Paris, France. (2012), p. 69.
- 5. N. I. Shakura and R. A. Sunyaev, Astron. and Astrophys. 24, 337 (1973).
- 6. M. A. Abramowicz and P. C. Fragile, Living Reviews in Relativity 16, 1 (2013).
- 7. G. A. Shields, Nature 272, 706 (1978).
- 8. B. Czerny and M. Elvis, Astrophys. J. **321**, 305 (1987).
- 9. A. Koratkar and O. Blaes, Publ. Astron. Soc. Pacific 111, 1 (1999).
- 10. R. Narayan, E. Quataert, I. V. Igumenshchev, and M. A. Abramowicz, Astrophys. J. **577**, 295 (2002).
- 11. G. Henri and P. O. Petrucci, Astron. and Astrophys. 326, 87 (1997).
- R. D. Blandford and R. L. Znajek, Monthly Notices Royal Astron. Soc. 179, 433 (1977).
- M. Sikora, M. C. Begelman, G. M. Madejski, and J.-P. Lasota, Astrophys. J. 625, 72 (2005).

- M. Elitzur, in *The Central Engine of Active Galactic Nuclei*, Edited by L. C. Ho and J.-W. Wang (2007), *Astronomical Society of the Pacific Conference Series*, vol. 373, p. 415.
- B. L. Fanaroff and J. M. Riley, Monthly Notices Royal Astron. Soc. 167, 31P (1974).
- 16. H. Krawczynski and E. Treister, Frontiers of Physics 8, 609 (2013).
- 17. R. D. Blandford and M. J. Rees, eds., *Some comments on radiation mechanisms in Lacertids* (1978).
- 18. R. D. Blandford and A. Königl, Astrophys. J. 232, 34 (1979).
- M. C. Begelman, R. D. Blandford, and M. J. Rees, Reviews of Modern Physics 56, 255 (1984).
- 20. C. M. Urry and P. Padovani, Publ. Astron. Soc. Pacific 107, 803 (1995).
- 21. J. N. Bregman, A. E. Glassgold, P. J. Huggins, et al., Nature 293, 714 (1981).
- 22. C. M. Urry and R. F. Mushotzky, Astrophys. J. 253, 38 (1982).
- 23. C. D. Impey and G. Neugebauer, Astron. J. 95, 307 (1988).
- 24. A. P. Marscher, in *IAU Colloq. 164: Radio Emission from Galactic and Extragalactic Compact Sources*, Edited by J. A. Zensus, G. B. Taylor, and J. M. Wrobel (1998), *Astronomical Society of the Pacific Conference Series*, vol. 144, p. 25.
- 25. M. Böttcher, Astrophys. and Space Sci. 309, 95 (2007).
- 26. A. Mücke and R. J. Protheroe, International Cosmic Ray Conference **3**, 1153 (2001).
- 27. W. A. Stein, S. L. Odell, and P. A. Strittmatter, Annual Rev. Astron. Astrophys. 14, 173 (1976).
- 28. M.-P. Véron-Cetty and P. Véron, Astron. and Astrophys. 455, 773 (2006).
- 29. A. A. Abdo, M. Ackermann, M. Ajello, et al., Astrophys. J. 715, 429 (2010).

- R. C. Hartman, D. L. Bertsch, S. D. Bloom, et al., Astrophys. J. Suppl. 123, 79 (1999).
- 31. E. Massaro, P. Giommi, C. Leto, et al., Astron. and Astrophys. 495, 691 (2009).
- 32. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, et al., Astron. J. 140, 1868 (2010).
- 33. A. Maselli, F. Massaro, G. Cusumano, et al., Astrophys. J. Suppl. 206, 17 (2013).
- 34. R. D'Abrusco, F. Massaro, A. Paggi, et al., Astrophys. J. Suppl. 215, 14 (2014).
- 35. H. Teräsranta, J. Achren, M. Hanski, et al., Astron. and Astrophys. 427, 769 (2004).
- M. F. Aller, H. D. Aller, P. A. Hughes, and G. E. Latimer, Astrophys. J. 512, 601 (1999).
- J. L. Richards, W. Max-Moerbeck, V. Pavlidou, et al., Astrophys. J. Suppl. 194, 29 (2011).
- 38. R. M. Sambruna, L. Maraschi, and C. M. Urry, Astrophys. J. 463, 444 (1996).
- 39. C. von Montigny, D. L. Bertsch, J. Chiang, et al., Astrophys. J. 440, 525 (1995).
- 40. A. A. Abdo, M. Ackermann, I. Agudo, et al., Astrophys. J. 716, 30 (2010).
- 41. P. Padovani and P. Giommi, Astrophys. J. 444, 567 (1995).
- 42. P. Giommi and P. Padovani, Monthly Notices Royal Astron. Soc. 268, L51 (1994).
- 43. R. E. Wurtz, Ph.D. thesis, UNIVERSITY OF COLORADO AT BOULDER. (1994).
- 44. B. Z. Kapanadze, Astron. J. 145, 31 (2013).
- 45. C. Hoffmeister, Astronomische Nachrichten 236, 233 (1929).
- 46. Википедия, "Ящерица (созвездие) Википедия, свободная энциклопедия,"
 (2014).
- 47. J. L. Schmitt, Nature **218**, 663 (1968).
- 48. J. B. Oke and J. E. Gunn, Astrophys. J. 189, L5 (1974).
- 49. S. E. Khaikin, N. L. Kaidanovskii, I. N. Pariiskii, and N. A. Esepkina, Izvestiya Glavnoj Astronomicheskoj Observatorii v Pulkove **188**, 3 (1972).
- 50. I. N. Pariiskii and O. N. Shivris, Izvestiya Glavnoj Astronomicheskoj Observatorii v Pulkove **188**, 13 (1972).
- 51. I. N. Pariiskii, O. N. Shivris, D. V. Korolkov, et al., Radiofizika 19, 1581 (1976).
- 52. Y. N. Parijskij, IEEE Antennas and Propagation Magazine 35 (1993).
- 53. P. G. Tsybulev, Astrophysical Bulletin 66, 109 (2011).
- 54. J. W. M. Baars, R. Genzel, I. I. K. Pauliny-Toth, and A. Witzel, Astron. and Astrophys. **61**, 99 (1977).
- 55. M. Ott, A. Witzel, A. Quirrenbach, et al., Astron. and Astrophys. 284, 331 (1994).
- 56. R. A. Perley and B. J. Butler, Astrophys. J. Suppl. 204, 19 (2013).
- 57. H. Tabara and M. Inoue, Astron. and Astrophys. Suppl. 39, 379 (1980).
- 58. K. D. Aliakberov, M. G. Mingaliev, M. N. Naugolnaya, et al., Astrofizicheskie Issledovaniia Izvestiya Spetsial'noj Astrofizicheskoj Observatorii **19**, 60 (1985).
- 59. O. V. Verkhodanov, Astronomical Data Analysis Software and Systems VI, A.S.P. Conference Series **125**, 46 (1997).
- R. Y. Udovitskiy, Proceedings of the Institute of Applied Astronomy of RAS 177, 24 (2012).
- 61. E. S. Perlman, P. Padovani, P. Giommi, et al., Astron. J. 115, 1253 (1998).
- 62. S. Turriziani, E. Cavazzuti, and P. Giommi, å472, 699 (2007).
- 63. R. M. Plotkin, S. F. Anderson, P. B. Hall, et al., Astron. J. 135, 2453 (2008).
- 64. S. J. Wagner and A. Witzel, Annual Rev. Astron. Astrophys. 33, 163 (1995).

- S. Cutini, S. Ciprini, M. Orienti, et al., Monthly Notices Royal Astron. Soc. 445, 4316 (2014).
- 66. E. Nieppola, M. Tornikoski, A. Lähteenmäki, et al., Astron. J. 133, 1947 (2007).
- 67. J. L. Richards, T. Hovatta, W. Max-Moerbeck, et al., Monthly Notices Royal Astron. Soc. **438**, 3058 (2014).
- E. Valtaoja, A. Lähteenmäki, H. Teräsranta, and M. Lainela, Astrophys. J. Suppl. 120, 95 (1999).
- 69. M. G. Mingaliev, Y. V. Sotnikova, R. Y. Udovitskiy, et al., Astron. and Astrophys. 572, A59 (2014).
- 70. E. Nieppola, M. Tornikoski, and E. Valtaoja, Astron. and Astrophys. **445**, 441 (2006).
- 71. M.-P. Véron-Cetty and P. Véron, å374, 92 (2001).
- 72. M. G. Mingaliev, Y. V. Sotnikova, T. V. Mufakharov, et al., Astrophysical Bulletin **68**, 262 (2013).
- 73. C. P. O'Dea, S. A. Baum, and C. Stanghellini, Astrophys. J. 380, 66 (1991).
- 74. C. P. O'Dea, Publ. Astron. Soc. Pacific 110, 493 (1998).
- 75. M. G. Mingaliev, Y. V. Sotnikova, T. V. Mufakharov, et al., VizieR Online Data Catalog (other) **330**, 6802 (2013).
- 76. M. F. Aller, H. D. Aller, and P. A. Hughes, Astrophys. J. 399, 16 (1992).
- 77. P. A. Strittmatter, K. Serkowski, R. Carswell, et al., Astrophys. J. 175, L7 (1972).
- 78. R. I. Kollgaard, Vistas in Astronomy **38**, 29 (1994).
- 79. L. Maraschi and F. Tavecchio, Astrophys. J. 593, 667 (2003).
- A. Celotti, P. Padovani, and G. Ghisellini, Monthly Notices Royal Astron. Soc. 286, 415 (1997).
- 81. X. Cao and D. R. Jiang, Monthly Notices Royal Astron. Soc. 307, 802 (1999).

- 82. C. Xu, M. Livio, and S. Baum, Astron. J. 118, 1169 (1999).
- 83. G. Z. Xie, H. Dai, and S. B. Zhou, Astron. J. 134, 1464 (2007).
- 84. T. Yi and G. Xie, Publ. Astron. Soc. Japan 60, 161 (2008).
- 85. G. Ghisellini, in VI Microquasar Workshop: Microquasars and Beyond (2006), p. 27.
- Planck Collaboration, J. Aatrokoski, P. A. R. Ade, et al., Astron. and Astrophys. 536, A15 (2011).
- 87. P. Giommi, G. Polenta, A. Lähteenmäki, et al., Astron. and Astrophys. 541, A160 (2012).
- M. G. Mingaliev, Y. V. Sotnikova, N. N. Bursov, et al., Astron. Zh. 51, 343 (2007).
- 89. M. G. Mingaliev, Y. V. Sotnikova, N. S. Kardashev, and M. G. Larionov, Astronomy Reports 53, 487 (2009).
- M. G. Mingaliev, Y. V. Sotnikova, I. Torniainen, et al., Astron. and Astrophys. 544, 1 (2012).
- D. Donato, G. Ghisellini, G. Tagliaferri, and G. Fossati, Astron. and Astrophys. 375, 739 (2001).
- G. Fossati, L. Maraschi, A. Celotti, et al., Monthly Notices Royal Astron. Soc. 299, 433 (1998).
- 93. R. M. Sambruna, Astrophys. J. 487, 536 (1997).
- 94. D. M. Worrall and B. J. Wilkes, Astrophys. J. 360, 396 (1990).
- 95. R. M. Sambruna, P. Barr, P. Giommi, et al., Astrophys. J. Suppl. 95, 371 (1994).
- P. Padovani, R. Morganti, J. Siebert, et al., Monthly Notices Royal Astron. Soc. 304, 829 (1999).
- 97. M. Cappi, M. Matsuoka, A. Comastri, et al., Astrophys. J. 478, 492 (1997).
- 98. F. Tavecchio, L. Maraschi, G. Ghisellini, et al., Astrophys. J. 543, 535 (2000).

- 99. A. Comastri, G. Fossati, G. Ghisellini, and S. Molendi, Astrophys. J. 480, 534 (1997).
- 100. H. Kubo, T. Takahashi, G. Madejski, et al., Astrophys. J. 504, 693 (1998).
- 101. R. M. Sambruna, G. Ghisellini, E. Hooper, et al., Astrophys. J. 515, 140 (1999).
- 102. P. J. Francis, P. C. Hewett, C. B. Foltz, et al., Astrophys. J. 373, 465 (1991).
- 103. S. E. Healey, R. W. Romani, G. B. Taylor, et al., Astrophys. J. Suppl. 171, 61 (2007).
- 104. T. V. Mufakharov, Y. V. Sotnikova, A. K. Erkenov, and M. G. Mingaliev, Astrophysical Bulletin **69**, 266 (2014).
- 105. G. B. Rybicki and A. P. Lightman, Radiative processes in astrophysics (1979).
- 106. A. Konigl, Astrophys. J. 243, 700 (1981).
- 107. A. P. Marscher and W. K. Gear, Astrophys. J. 298, 114 (1985).
- 108. M. Sikora, M. C. Begelman, and M. J. Rees, Astrophys. J. 421, 153 (1994).
- 109. R. D. Blandford and A. Levinson, Astrophys. J. 441, 79 (1995).
- 110. F. W. Stecker, M. H. Salamon, and M. A. Malkan, Astrophys. J. 410, L71 (1993).
- P. Padovani, G. Ghisellini, A. C. Fabian, and A. Celotti, Monthly Notices Royal Astron. Soc. 260, L21 (1993).
- 112. A. Muecke, M. Pohl, P. Reich, et al., Astron. and Astrophys. 320, 33 (1997).
- 113. G. B. Taylor, S. E. Healey, J. F. Helmboldt, et al., Astrophys. J. 671, 1355 (2007).
- 114. G. Ghirlanda, G. Ghisellini, F. Tavecchio, and L. Foschini, Monthly Notices Royal Astron. Soc. **407**, 791 (2010).
- 115. A. A. Abdo, M. Ackermann, M. Ajello, et al., Astrophys. J. Suppl. 188, 405 (2010).

- 116. T. Murphy, E. M. Sadler, R. D. Ekers, et al., Monthly Notices Royal Astron. Soc. 402, 2403 (2010).
- 117. Y. Y. Kovalev, H. D. Aller, M. F. Aller, et al., Astrophys. J. 696, L17 (2009).
- 118. M. Ackermann, M. Ajello, A. Allafort, et al., Astrophys. J. 741, 30 (2011).
- 119. V. Pavlidou, J. L. Richards, W. Max-Moerbeck, et al., Astrophys. J. **751**, 149 (2012).
- E. Nieppola, M. Tornikoski, E. Valtaoja, et al., Astron. and Astrophys. 535, A69 (2011).
- 121. T. Mufakharov, M. Mingaliev, Y. Sotnikova, et al., Monthly Notices Royal Astron. Soc. **450**, 2658 (2015).
- 122. J. V. Wall and C. R. Jenkins, Practical Statistics for Astronomers (2003).
- 123. E. Komatsu, J. Dunkley, M. R. Nolta, et al., Astrophys. J. Suppl. 180, 330 (2009).
- M. Elvis, T. Maccacaro, A. S. Wilson, et al., Monthly Notices Royal Astron. Soc. 183, 129 (1978).
- 125. J. León-Tavares, E. Valtaoja, P. Giommi, et al., Astrophys. J. 754, 23 (2012).
- 126. E. J. Lindfors, E. Valtaoja, and M. Türler, Astron. and Astrophys. 440, 845 (2005).
- 127. T. Hovatta, V. Pavlidou, O. G. King, et al., Monthly Notices Royal Astron. Soc. 439, 690 (2014).
- 128. G. Ghirlanda, G. Ghisellini, F. Tavecchio, et al., Monthly Notices Royal Astron. Soc. 413, 852 (2011).
- 129. L. Fuhrmann, S. Larsson, J. Chiang, et al., Monthly Notices Royal Astron. Soc. 441, 1899 (2014).
- J. León-Tavares, E. Valtaoja, M. Tornikoski, et al., Astron. and Astrophys. 532, A146 (2011).

- S. Antón and I. W. A. Browne, Monthly Notices Royal Astron. Soc. 356, 225 (2005).
- 132. P. Giommi, P. Padovani, G. Polenta, et al., Monthly Notices Royal Astron. Soc. 420, 2899 (2012).
- 133. P. Giommi, P. Padovani, and G. Polenta, Monthly Notices Royal Astron. Soc.431, 1914 (2013).
- 134. F. D'Ammando, C. M. Raiteri, M. Villata, et al., Astron. and Astrophys. 529, A145 (2011).
- E. Nieppola, E. Valtaoja, M. Tornikoski, et al., Astron. and Astrophys. 488, 867 (2008).
- 136. M. Ackermann, M. Ajello, A. Allafort, et al., Astrophys. J. 743, 171 (2011).
- 137. M. G. Mingaliev, , Y. V. Sotnikova, et al., Astrophysical Bulletin 70, 264 (2015).
- 138. M. Stickel, P. Padovani, C. M. Urry, et al., Astrophys. J. 374, 431 (1991).
- 139. M. Stickel and H. Kuehr, Astron. and Astrophys. Suppl. 103, 349 (1994).
- 140. H. Kuehr and G. D. Schmidt, Astron. J. 99, 1 (1990).
- 141. T. Maccacaro, I. M. Gioia, D. Maccagni, and J. T. Stocke, Astrophys. J. 284, L23 (1984).
- 142. I. M. Gioia, T. Maccacaro, R. E. Schild, et al., Astrophys. J. Suppl. 72, 567 (1990).
- 143. J. T. Stocke, J. Liebert, G. Schmidt, et al., Astrophys. J. 298, 619 (1985).
- 144. E. S. Perlman, J. T. Stocke, J. F. Schachter, et al., Astrophys. J. Suppl. 104, 251 (1996).
- 145. G. Stratta, M. Capalbi, P. Giommi, et al., ArXiv e-prints (2011).
- 146. A. Maselli, E. Massaro, R. Nesci, et al., Astron. and Astrophys. 512, A74 (2010).
- 147. G. Ghisellini, A. A. Celotti, G. Fossati, et al., Monthly Notices Royal Astron. Soc. 301, 451 (1998).

- 148. T. V. Mufakharov, Y. V. Sotnikova, M. G. Mingaliev, and A. K. Erkenov, Astrophysical Bulletin **70**, 273 (2015).
- 149. M. S. Bessell, Publ. Astron. Soc. Pacific 91, 589 (1979).
- A. Comastri, S. Molendi, and G. Ghisellini, Monthly Notices Royal Astron. Soc. 277, 297 (1995).
- 151. S. Ciprini, The Astronomer's Telegram 6568, 1 (2014).
- 152. R. Nesci, The Astronomer's Telegram 6577, 1 (2014).
- 153. L. Carrasco, A. Porras, E. Recillas, et al., The Astronomer's Telegram 6662, 1 (2014).
- 154. J. P. Halpern, M. Eracleous, and J. R. Mattox, Astron. J. 125, 572 (2003).
- 155. F. K. Liu and Y. H. Zhang, Astron. and Astrophys. 381, 757 (2002).
- 156. M. Stickel, J. W. Fried, and H. Kuehr, Astron. and Astrophys. Suppl. 98, 393 (1993).
- 157. J. K. Kotilainen, T. Hyvönen, and R. Falomo, Astron. and Astrophys. 440, 831 (2005).
- 158. B. Sara, The Astronomer's Telegram 6068, 1 (2014).
- 159. R. Nesci, A. Caravano, and L. Villani, The Astronomer's Telegram **6072**, 1 (2014).
- 160. R. A. Laing, J. M. Riley, and M. S. Longair, Monthly Notices Royal Astron. Soc. 204, 151 (1983).
- 161. U. Bach, C. M. Raiteri, M. Villata, et al., Astron. and Astrophys. 464, 175 (2007).
- 162. S. Cutini, The Astronomer's Telegram **6631**, 1 (2014).

Приложение А

Таблица 10: Параметры выборки блазаров, наблюдавшихся на РАТАН-600 в период 2006–2014 гг. Описание колонок приведено во второй Главе диссертации. Совместный результат автора, опубликован в работе [69]

Имя	RA(2000.0)	DEC(2000.0)	N	Z	$\log \nu_{peak}^s$	SED class	AGN class	Тип
NRAO 5	00:06:13.9	-06:23:36	15	0.347	12.75	LSP	FSRQ	RBL
MS 0011.7+0837	00:14:19.7	+08:54:04	6	0.162	16.74	HSP	blazar	XBL
PKS 0017+200	00:19:37.8	+20:21:45	3	0	13.08	LSP	BL Lac	RBL
PKS 0019+058	00:22:32.5	+06:08:05	16	0	13.19	LSP	BL Lac	RBL
2MASX J00323309-2849200	00:32:33.0	-28:49:20	1	0.324	14.15	LSP	BL Lac	RBL
RXS J0325.2+1515	00:35:14.9	+15:15:04	8	1.280	15.80	ISP	BL Lac	XBL
1ES 0037+405	00:40:13.7	+40:50:04	1	0	13.16	LSP	blazar	RBL
RXS J0045.3+2127	00:45:19.2	+21:27:42	1	0	16.89	HSP	BL Lac	RBL
PKS 0047+023	00:49:43.3	+02:37:04	11	0	13.56	LSP	BL Lac	RBL
PKS 0048-097	00:50:41.2	-09:29:06	14	0.200	14.30	LSP	BL Lac	RBL
NPMIG -09.0033	00:56:20.0	-09:36:29	3	0.103	15.46	ISP	BL Lac	RBL
RXS J0058.2+1723	00:58:16.7	+17:23:14	2	0	16.80	HSP	BL Lac	XBL
B2 0103+33	01:06:00.2	+34:02:03	1	0.579	13.38	LSP	cand.	RBL
Q J0109+181	01:09:08.1	+18:16:07	1	0.145	14.65	ISP	cand.	RBL
NPMIG +41.0022	01:10:04.7	+41:49:50	1	0.096	17.70	HSP	BL Lac	RBL
1FGL J0110.0+6806	01:10:12.8	+68:05:41	1	0.290	14.99	ISP	blazar	RBL
S4 0108+38	01:11:37.3	+39:06:28	12	0.668	12.06	LSP	blazar	RBL
S2 0109+22	01:12:05.8	+22:44:38	1	0.265	14.32	LSP	cand.	RBL
PKS 0118-272	01:20:31.6	-27:01:24	3	0.560	14.44	LSP	BL Lac	RBL
1ES 0120+340	01:23:08.5	+34:20:47	1	0.272	18.33	HSP	BL Lac	RBL
MS 0122.1+0903	01:24:44.5	+09:18:49	3	0.339	15.53	ISP	BL Lac	XBL
PKS 0138-097	01:41:25.8	-09:28:43	13	0.733	13.40	LSP	BL Lac	RBL
PKS 0140-059	01:42:38.8	-05:44:01	1	0	13.96	LSP	BL Lac	RBL
1ES 0145+138	01:48:29.7	+14:02:18	8	0.125	15.44	ISP	BL Lac	XBL
8C 0149+710	01:53:25.8	+71:15:06	2	0.022	14.75	ISP	blazar	RBL
87GB 0156.9+1032	01:59:34.4	+10:47:07	6	0.195	15.56	ISP	cand.	RBL
MS 0158.5+0019	02:01:06.1	+00:34:00	4	0.298	17.87	HSP	BL Lac	XBL
PKS 0202+14	02:04:50.4	+15:14:11	4	0.833	12.35	LSP	blazar	RBL
S5 0205+72	02:09:51.7	+72:29:26	1	0.895	14.50	LSP	blazar	RBL
Z 0214+083	02:17:17.0	+08:37:03	7	1.400	15.23	ISP	cand.	RBL
OD 330	02:21:05.5	+35:56:13	2	0.944	12.88	LSP	blazar	RBL
PKS 0219-164	02:22:00.7	-16:15:16	1	0.698	14.19	LSP	FSRQ	RBL
3C 66A	02:22:39.6	+43:02:07	5	0.444	15.63	ISP	BL Lac	RBL
1ES 0229+200	02:32:48.6	+20:17:17	5	0.140	19.45	HSP	BL Lac	XBL
AO 0235+164	02:38:38.8	+16:36:59	28	0.940	13.57	LSP	BL Lac	RBL
4C 10.08	02:45:13.4	+10:47:22	2	0.077	16.07	ISP	blazar	RBL
PKS 0245-167	$02:\!48:\!07.7$	-16:31:46	3	0	13.03	LSP	BL Lac	RBL
RXS J0250.6+1712	02:50:38.0	+17:12:08	7	1.100	17.60	HSP	FSRQ	RBL
PKS 0301-243	03:03:26.5	-24:07:13	5	0.260	15.40	ISP	BL Lac	RBL
4C 47.08	03:03:35.2	+47:16:16	5	0.475	14.18	LSP	BL Lac	RBL
PKS 0306+102	03:09:03.6	+10:29:16	15	0.863	12.94	LSP	FSRQ	RBL

11	D A (12000)	D (12000)	N		1 6	CED 1	ACN 1	т
ИМЯ	RA (J2000)	Dec (J2000)	N	Z	$\log \nu_{peak}^{s}$	SED class	AGN class	Тип
RXS J0314.3+0620	03:14:23.9	+06:19:57	5	0	19.57	HSP	BL Lac	XBL
RXS J0316.1+0904	03:16:12.9	+09:04:43	6	0	15.91	ISP	BL Lac	RBL
3C 84	03:19:48.1	+41:30:42	6	0.018	13.72	LSP	blazar	RBL
MS 0317.0+1834	03:19:51.8	+18:45:35	6	0.190	16.99	HSP	BL Lac	XBL
2E 0323+0214	03:26:13.9	+02:25:14	7	0.147	19.87	HSP	BL Lac	RBL
PKS 0338-214	03:40:35.6	-21:19:31	5	0.223	13.44	LSP	BL Lac	RBL
PKS 0346-163	03:48:39.2	-16:10:17	8	0	13.43	LSP	BL Lac	RBL
S5 0346+800	03:54:46.1	+80:09:28	1	0	12.99	LSP	cand.	RBL
PKS 0357-264	03:59:33.6	-26:15:31	3	1.470	13.18	LSP	BL Lac	RBL
PKS 0406+121	04:09:22.1	+12:17:39	19	1.020	13.22	LSP	BL Lac	RBL
2E 0414+0057	04:16:52.4	+01:05:24	6	0.287	20.71	HSP	BL Lac	RBL
1WGA J0421.5+1433	04:21:33.1	+14:33:54	2	0.059	13.93	LSP	BL Lac	RBL
MS 0419.3+1943	04:22:18.5	+19:50:53	2	0.512	16.82	HSP	BL Lac	XBL
PKS 0420+022	04:22:52.2	+02:19:27	9	2.277	12.85	LSP	FSRQ	RBL
PKS 0422+004	04:24:46.8	+00:36:07	14	0.310	15.69	ISP	BL Lac	RBL
MCG -01.12.005	04:25:51.3	-08:33:38	4	0.039	17.17	HSP	blazar	RBL
3C 120	04:33:11.0	+05:21:15	5	0.033	14.24	LSP	blazar	RBL
2EG J0432+2910	04:33:37.8	+29:05:55	2	0.970	14.09	LSP	BL Lac	RBL
PKS 0439-299	04:41:19.5	-29:52:35	2	0	13.89	LSP	cand.	RBL
PKS 0446+11	04:49:07.6	+11:21:28	20	1.207	12.80	LSP	BL Lac	RBL
PKS 0459+135	05:02:33.2	+13:38:11	8	0	13.55	LSP	BL Lac	RBL
Q 0458+6530	05:03:05.8	+65:34:01	1	0	18.12	HSP	cand.	XBL
RXS J0505.5+0416	05:05:34.7	+04:15:54	6	0.027	16.94	HSP	cand.	RBL
1ES 0502±675	05.07.56.1	+67:37:24	6	0 314	19.18	HSP	BL Lac	XBL
S5 0454+84	05:08:42.3	+84:32:04	3	1 340	13.58	LSP	BL Lac	RBL
MG 0509+0541	05:09:25.9	+05.41.35	3	0	15.34	ISP	BL Lac	RBL
4U 0506-03	05:09:39.0	-04:00:36	14	0 304	17.94	HSP	cand	XBL
1FGL 10515 2+7355	05:16:31.2	+73.51.08	1	0.249	15.87	ISP	cand.	RBI
PKS 0524+034	05.10.31.2 05.27.32.7	+03.31.31	7	0.509	13.04	I SP	BL Lac	RBI
1WGA 10536 4-3342	05:36:29.1	-33:43:02	1	0	16.03	ISP	cand	XBI
HB89 0548-322	05:50:40.6	-32:16:20	1	0.069	16.88	HSP	BL Lac	RBI
TEX 0554+534	05:58:11.8	$\pm 53.28.17$	1	0.005	14.44	I SP	blazar	RBI
B3 0600+413	06.12.51 1	+33.20.17 + $41.22.37$	2	0.050	15.11	ISD	cand	DBI
MS 0607 9+7108	06.12.31.1	+71.07.26	1	0 267	14.85	ISD	BL Lac	VBI
10617+5701	06.17.16.0	$\pm 71.07.20$	2	0.207	14.05	ISI	DL Lac	DDI
97CP 06200+2822	06.22.28.0	+37.01.10	2	0 421	14.12		blozor	
87GB 06216+4441	06.25.28.9	+38.30.49	3	0.421	15.37	LSF	DIAZAI	NDL DDI
87GB 00210+4441	06.25.18.2	+44.40.01	1	0 710	13.20		bL Lac	NDL DDI
DVS 0627 100	06.20.03.0	+82.02.23	1	0.710	13.20		DIAZAI	NDL DDI
PKS 0627-199	00:29:25.7	-19:39:19	1	0 202	12.02	LSP	DL Lac	KDL DDI
TES 064/+230	06:50:40.5	+25:03:00	2	0.203	10.51	ISP	BL Lac	KBL
B3 0031+428	00:34:45.5	+42:47:38	1	0.120	14.90	ISP	DL Lac	KDL DDI
4C +42.22	06:56:10.6	+42:37:02	5	0.059	17.25	HSP	BL Lac	KBL
2MASS J06562263-2403194	06:56:22.6	-24:03:17	1	0.371	15.03	ISP	BL Lac	KBL
J0/0/+6110	07:07:00.6	+61:10:11	3	0	13.76	LSP	BL Lac	RBL
EXO 0/06.1+5913	07:10:30.1	+59:08:21	6	0.125	21.05	HSP	BL Lac	RBL
B3 0/0/+4/6	07:10:46.1	+47:32:11	2	1.292	14.62	ISP	BL Lac	RBL
GB2 0/16+332	07:19:19.4	+33:07:09	I	0.779	14.00	LSP	blazar	RBL
S5 0/16+/14	07:21:53.4	+71:20:36	6	0.300	14.46	LSP	BL Lac	RBL
PKS 0723-008	07:25:50.6	-00:54:56	4	0.128	13.46	LSP	blazar	RBL
PKS 0735+17	07:38:07.4	+17:42:19	15	0.424	13.95	LSP	BL Lac	KBL
4C +54.15	07:53:01.3	+53:52:59	3	0.200	13.12	LSP	BL Lac	RBL
GB 0751+485	07:54:45.6	+48:23:50	1	0.377	13.52	LSP	cand.	RBL
PKS 0754+100	07:57:06.7	+09:56:35	24	0.266	13.63	LSP	BL Lac	RBL
PKS 0808+019	08:11:26.6	+01:46:52	16	0.930	13.17	LSP	BL Lac	RBL
1WGA J0816.0-0736	08:16:04.3	-07:35:57	4	0.040	14.19	LSP	BL Lac	RBL
J0817-0933	08:17:49.7	-09:33:30	2	0	14.00	LSP	cand.	RBL
OJ 425	08:18:16.0	+42:22:45	5	0.530	13.27	LSP	BL Lac	RBL
PKS 0818-128	08:20:57.4	-12:58:59	6	0.074	14.98	ISP	BL Lac	RBL

Имя	RA (J2000)	Dec (J2000)	Ν	Z	$\log u^s_{peak}$	SED class	AGN class	Тип
4C 22.21	08:23:24.7	+22:23:03	4	0.951	13.09	LSP	BL Lac	RBL
PKS 0823+033	08:25:50.3	+03:09:24	22	0.506	13.08	LSP	BL Lac	RBL
PKS 0823-223	08:26:01.5	-22:30:27	3	0.910	14.00	LSP	BL Lac	RBL
PKS 0829+046	08:31:48.9	+04:29:39	7	0.180	13.53	LSP	BL Lac	RBL
1H 0827+089	08:31:54.8	+08:47:58	5	0	14.22	LSP	BL Lac	RBL
OJ 448	08:32:23.2	+49:13:20	2	0.548	13.36	LSP	BL Lac	RBL
TEX 0836+182	08:39:30.7	+18:02:47	14	0.280	14.55	ISP	BL Lac	RBL
PKS 0837+035	08:39:49.2	+03:19:53	5	1.570	12.20	LSP	BL Lac	RBL
RXS J0847.2+1133	08:47:12.9	+11:33:52	4	0.198	19.13	HSP	BL Lac	RBL
2MASS J08475674-0703169	08:47:56.7	-07:03:17	1	0	14.13	LSP	cand.	RBL
US1889	08:54:09.8	+44:08:30	3	0.382	15.81	ISP	BL Lac	OBL
OJ 287	08:54:48.8	+20:06:30	11	0.306	13.89	LSP	BL Lac	RBL
NPM1G -09.0307	09:08:02.2	-09:59:37	7	0.050	15.50	ISP	blazar	XBL
3C 216.0	09:09:33.4	+42:53:46	7	0.670	13.53	LSP	blazar	RBL
RXS J09130-2103	09:13:00.1	-21:03:20	1	0.198	16.45	ISP	cand.	RBL
B2 0912+29	09:15:52.3	+29:33:24	3	0.101	15.52	ISP	BL Lac	RBL
B2 0922+31B	09:25:43.6	+31:27:10	1	0.260	13.28	LSP	BL Lac	RBL
J09291544+5013360	09:29:15.4	+50:13:35	4	0.370	14.59	ISP	BL Lac	RBL
1ES 0927+500	09:30:37.5	+49:50:25	5	0.188	21.13	HSP	BL Lac	XBL
B2 0927+35	09:30:55.2	+35:03:37	10	0	14.80	ISP	BL Lac	RBL
B2 0937+26	09:40:14.7	+26:03:29	5	0.498	14.75	ISP	BL Lac	RBL
RXS J09449-1347	09:44:59.2	-13:47:55	1	0.170	15.87	ISP	cand.	XBL
2FGL J0945.9+5751	09:45:42.2	+57:57:47	1	0.229	14.83	ISP	BL Lac	RBL
RXS J09530-0840	09:53:02.6	-08:40:18	1	0	15.35	ISP	cand.	RBL
S4 0954+65	09:58:47.2	+65:33:54	6	0.367	13.76	ISP	BL Lac	RBL
4C22.25	10:00:21.9	+22:33:18	7	0.419	15.34	ISP	blazar	RBL
J1008+0621	10:08:00.8	+06:21:21	2	1.720	14.00	LSP	cand.	RBL
RXS J1008.1+4705	10:08:11.3	+47:05:20	3	0.343	19.67	HSP	BL Lac	XBL
PKS 1008+013	10:11:15.6	+01:06:42	1	1.275	14.05	LSP	BL Lac	RBL
NRAO 350	10:12:13.3	+06:30:57	11	0.727	16.09	ISP	BL Lac	RBL
RXS J1012.7+4229	10:12:44.3	+42:29:57	8	0.364	16.60	HSP	BL Lac	RBL
2FGL J1019.8+6322	10:19:50.8	+63:20:01	1	2.025	13.19	LSP	BL Lac	RBL
RXS J1022.7-0112	10:22:43.9	-01:12:56	6	0	17.97	HSP	BL Lac	XBL
SDSS J10326+6623	10:32:39.0	+66:23:23	1	2.212	14.59	ISP	BL Lac	RBL
J1036+1233	10:36:40.3	+12:33:38	1	0.588	15.00	ISP	BL Lac	RBL
TEX 1040+244	10:43:09.0	+24:08:35	15	0.560	13.00	LSP	cand.	RBL
S5 1044+719	10:48:27.6	+71:43:35	2	1.150	13.26	LSP	blazar	RBL
GB6 J1054+2210	10:54:30.6	+22:10:54	1	1.539	14.87	ISP	BL Lac	RBL
RX J10578-2753	10:57:50.7	-27:54:11	1	0.092	15.00	ISP	BL Lac	XBL
B3 1055+433	10:58:02.9	+43:04:41	1	2.204	13.84	LSP	BL Lac	RBL
4C 01.28	10:58:29.6	+01:33:58	8	0.890	13.15	LSP	blazar	RBL
MRK 421	11:04:27.2	+38:12:32	13	0.031	18.49	HSP	BL Lac	RBL
RXS J1110.6+7133	11:10:37.5	+71:33:56	1	0	16.96	HSP	BL Lac	RBL
FIRST J1117.6+2548	11:17:40.4	+25:48:46	1	0.360	15.71	ISP	BL Lac	XBL
EXO 1118	11:20:48.0	+42:12:12	1	0.124	16.47	HSP	BL Lac	XBL
CGRaBS J1121-0711	11:21:42.1	-07:11:06	1	0	16.04	ISP	BL Lac	RBL
J112402.70+23	11:24:02.7	+23:36:45	5	1.549	12.62	LSP	BL Lac	RBL
J1132+0034	11:32:45.6	+00:34:27	4	1.223	14.25	ISP	BL Lac	RBL
MS 1133.7+1618	11:36:17.6	+16:01:53	3	0.574	15.90	ISP	BL Lac	XBL
MRK 180	11:36:26.4	+70:09:27	1	0.045	18.61	HSP	BL Lac	RBL
A1137+1544	11:40:23.4	+15:28:09	1	0.244	15.90	ISP	BL Lac	XBL
GB6 B1144+3517	11:47:22.1	+35:01:07	2	0.063	15.43	ISP	blazar	RBL
J1148+1840	11:48:37.7	+18:40:09	5	1.085	12.94	LSP	BL Lac	RBL
EXO 1149.9+2455	11:49:30.3	+24:39:27	3	0.400	19.83	HSP	BL Lac	RBL
B2 1147+24	11:50:19.2	+24:17:54	15	0.200	13.95	LSP	BL Lac	RBL
RXS J1151.4+5859	11:51:24.6	+58:59:17	1	0.118	16.40	ISP	BL Lac	RBL
SBS 1200+608	12:03:03.5	+60:31:19	1	0.065	14.68	ISP	BL Lac	RBL
J1206+0529	12:06:58.0	+05:29:52	4	0.791	12.91	LSP	BL Lac	RBL

Имя	RA (J2000)	Dec (J2000)	N	z	$\log \nu_{magh}^s$	SED class	AGN class	Тип
CGRaBS J1209-2032	12:09:14.6	-20:32:39	1	0.404	13.12	LSP	BL Lac	RBL
B3 1206+416	12:09:22.7	+41:19:41	1	0.377	13.88	LSP	BL Lac	RBL
1ES 1212+078	12:15:10.9	+07:32:03	5	0.130	15.91	ISP	BL Lac	RBL
GB6 B1215+3023	12:17:52.0	+30:07:00	3	0.130	15.20	ISP	BL Lac	RBL
PKS 1215-002	12.17.58.7	-00:29:46	1	0.419	12.94	LSP	BL Lac	RBL
GB2 1217+348	12:20:08.2	+34:31:21	1	0.643	14 46	LSP	BL Lac	RBL
PG 1218+304	12:21:21.9	+30:10:37	5	0.182	19.14	HSP	BL Lac	RBL
1WGA 11221 5+2813	12:21:21.6	+28.13.58	6	0.102	14 50	ISP	BL Lac	RBL
S5 1221+80	12:21:01:0	+20.15.50 +80.40.04	5	0.102	14.30	I SP	BL Lac	RBI
1WGA 11225 3+1818	12:25:10:1	+18.18.20	2	0.825	14.71	ISP	BL Lac	RBI
RXS 112302+2517	12:20:10:2	+25.18.06	6	0.135	14.71	ISP	BL Lac	RBL
2E 1258+1437	12:30:11:0	+14.21.25	2	0.260	14.91	ISP	BL Lac	RBI
B7B I1235+1700	12:31:25:9	+17:00:36	1	0.381	15.00	ISP	BL Lac	RBI
EIRST 11236 3+3900	12:36:23.0	+17.00.50 +39.00.01	1	0.301	16.61	HSP	BL Lac	RBI
PX 112370+3020	12:30:23:0	+39:00:01	1	0.390	17.32	HSD	BL Lac	VBI
RX J12370+3020	12.37.03.3	+30.20.03	1	0.700	17.52	пог		VDI
155 1220+060	12.41.41.4	+34.40.31	2	2.227	17.20	HSP	BL Lac	NDL
TES 1239+069	12:41:48.3	+06:36:01	3	0.150	17.38	HSP	BL Lac	XBL
RX J12418-1455	12:41:49.3	-14:55:58	1	0	15.70	ISP	BL Lac	ABL
Ton 116	12:43:12.7	+36:27:43	3	1.065	16.01	ISP	cand.	RBL
\$5 1250+53	12:53:11.9	+53:01:11	5	1.084	14.82	ISP	BL Lac	RBL
PKS 1256-229	12:59:08.4	-23:10:38	1	0.481	13.80	LSP	blazar	RBL
FIRST J1301.7+4056	13:01:45.6	+40:56:24	1	0.649	16.55	HSP	BL Lac	RBL
GB6 B1300+5804	13:02:52.4	+57:48:37	2	1.088	12.69	LSP	blazar	RBL
RXS J1302.9+5056	13:02:55.5	+50:56:17	1	0.688	17.86	HSP	BL Lac	XBL
MC2 1307+12	13:09:33.9	+11:54:24	14	0.318	13.07	LSP	BL Lac	RBL
1WGA J1309.6+0828	13:09:38.9	+08:28:28	9	0	14.64	ISP	BL Lac	RBL
OP 313	13:10:28.6	+32:20:43	10	0.997	12.68	LSP	blazar	RBL
PKS 1309-216	13:12:31.5	-21:56:24	1	1.491	14.52	ISP	BL Lac	RBL
RXS J1319.5+1405	13:19:31.7	+14:05:34	5	0.572	20.85	HSP	BL Lac	RBL
J132247.40+3216	13:22:47.3	+32:16:08	5	0.774	14.74	ISP	BL Lac	RBL
1ES 1320+084N	13:22:54.9	+08:10:10	5	1.500	13.12	LSP	BL Lac	XBL
RXS J1326.2+1230	13:26:17.6	+12:30:00	5	0.204	16.32	ISP	BL Lac	XBL
J132952.86+3154	13:29:52.8	+31:54:11	1	0	12.49	LSP	cand.	RBL
SDSS J13338+5057	13:33:53.7	+50:57:36	1	1.362	13.87	LSP	blazar	RBL
MS1332.6-2935	13:35:29.7	-29:50:39	1	0.513	14.76	ISP	BL Lac	XBL
RXS J1341.0+3959	13:41:05.0	+39:59:45	6	0.172	15.92	HSP	BL Lac	RBL
J134916-141316	13:49:16.0	-14:13:15	1	0.253	15.00	ISP	BL Lac	RBL
PKS1350+148	13:53:22.8	+14:35:39	2	0.807	13.20	LSP	BL Lac	RBL
RXS J1353.4+5601	13:53:28.0	+56:00:55	2	0.370	19.23	HSP	BL Lac	XBL
MC 1400+162	14:02:44.5	+15:59:57	12	0.244	16.47	ISP	BL Lac	RBL
MS 1402.3+0416	14:04:51.0	+04:02:02	5	0.344	15.83	ISP	BL Lac	XBL
MS 1407.9+5954	14:09:23.4	+59:39:40	1	0.495	16.63	HSP	BL Lac	XBL
PKS 1407+022	14:10:04.6	+02:03:07	10	1.253	13.69	LSP	BL Lac	RBL
RXS J1410.5+6100	14:10:31.7	+61:00:10	5	0.384	20.25	HSP	BL Lac	XBL
PKS 1413+135	14:15:58.8	+13:20:24	11	0.247	12.83	LSP	blazar	RBL
2E 1415+2557	14.17.56.6	+25:43:25	2	0.237	19.24	HSP	BL Lac	RBL
00 530	14:19:46.6	+54.23.13.23	4	0.153	14.16	I SP	BL Lac	RBI
SDSS 114202+0614	14:20:13.6	+06:14:28	1	0.625	14.10	LSP	BL Lac	RBI
DES 1424+240	14.20.15.0	+ 23:48:00	11	0.025	15.70	ISD	BL Lac	PBI
PXS 11424+240	14.27.00.5	+23.48.00	11	0.150	17.50	LCD		VDI
KAS J1430.97 3039	14:30:57.7	+30:39:24	1	0.130	17.30	пог	DL Lac	ADL
FK3 1437-133	14:39:50.8	-13:31:50		0.030	15.00	LOP		KBL
1ES 1440+122	14:42:48.3	+12:00:40	0	0.162	10.45	151	BL Lac	ABL
KAS J14495+2/46	14:49:32.6	+2/:46:19	1	0.225	16.18	ISP	BL Lac	XBL
B2 1451+26	14:53:53.5	+26:48:33	3	0	12.93	LSP	cand.	KBL
RXS J1456.0+5048	14:56:03.7	+50:48:25	5	0.480	19.94	HSP	BL Lac	XBL
RXS J1458.4+4832	14:58:28.0	+48:32:40	2	0.539	21.46	HSP	BL Lac	RBL
B3 1456+375	14:58:44.8	+37:20:22	8	0.333	13.47	LSP	BL Lac	RBL
TXS 1459+480	15:00:48.6	+47:51:15	1	1.059	12.88	LSP	cand.	RBL

Имя	RA (J2000)	Dec (J2000)	N	Z	$\log \nu_{peak}^s$	SED class	AGN class	Тип
PKS 1514+197	15:16:56.8	+19:32:12	19	0.650	13.60	LSP	BL Lac	RBL
PKS 1514-24	15:17:41.8	-24:22:19	4	0.048	14.16	LSP	BL Lac	RBL
PKS 1519-273	15:22:37.6	-27:30:10	5	1.294	12.87	LSP	BL Lac	RBL
1ES 1533+535	15:35:00.8	+53:20:37	5	0.890	19.68	HSP	BL Lac	XBL
MS 1534.2+0148	15:36:46.8	+01:37:59	5	0.312	18.83	HSP	BL Lac	XBL
4C 14.60	15:40:49.4	+14:47:45	20	0.605	14.85	ISP	BL Lac	RBL
RXS J1542.9+6129	15:42:56.9	+61:29:55	2	0.117	14.72	ISP	BL Lac	RBL
RXS J1544.3+0458	15:44:18.7	+04:58:24	6	0.326	16.77	HSP	BL Lac	RBL
PG 1553+11	15:55:43.1	+11:11:24	10	0.360	15.84	ISP	BL Lac	RBL
MYC 1557+566	15:58:48.2	+56:25:14	1	0.300	14.50	LSP	BL Lac	RBL
CGRaBS J1603+1105	16:03:41.9	+11:05:48	7	0.143	13.44	LSP	BL Lac	RBL
PKS 1604+159	16:07:06.4	+15:51:34	10	0.357	14.73	ISP	BL Lac	RBL
RXS J1610.0+6710	16:10:02.6	+67:10:29	1	0.067	17.45	HSP	BL Lac	RBL
SDSS J16183+3632	16:18:23.5	+36:32:01	3	0.730	14.63	ISP	BL Lac	RBL
NGC 6251	16:32:31.9	+82:32:16	3	0.025	14.95	ISP	blazar	RBL
CGRaBS J1642-0621	16:42:02.1	-06:21:23	4	1.514	12.88	LSP	BL Lac	RBL
1FGL J1647.4+4948	16:47:34.9	+49:50:00	1	0.047	14.15	LSP	blazar	RBL
PKS 1648+015	16:51:03.6	+01:29:23	4	0.400	12.76	LSP	BL Lac	RBL
MRK 501	16:53:52.2	+39:45:36	12	0.033	16.84	HSP	BL Lac	RBL
SDSS J16581+6150	16:58:08.3	+61:50:02	1	0.374	14.59	ISP	BL Lac	OBL
PKS 1707-038	17:10:17.2	-03:55:50	9	1.920	12.29	LSP	BL Lac	RBL
PGC 59947	17:15:22.9	+57:24:40	1	0.027	15.02	ISP	blazar	XBL
TEX 1714-336	17:17:36.0	-33:42:08	3	0	13.67	LSP	cand.	RBL
PKS 1717+177	17:19:13.1	+17:45:07	11	0.137	13.08	LSP	BL Lac	RBL
H 1722+119	17:25:04.4	+11:52:16	6	0.018	15.80	ISP	BL Lac	RBL
BZB J1733+4519	17:33:28.8	+45:19:50	1	0.317	15.16	ISP	cand.	XBL
OT 465	17:39:57.1	+47:37:58	1	0.950	13.91	LSP	BL Lac	RBL
NPM1G +19 0510	17:43:57.9	+19:35:09	7	0.083	17.91	HSP	BL Lac	RBL
11745-0753	17:45:27.1	-07:53:03	7	0	13 39	LSP	cand	RBL
B2 1743+39C	17:45:37.6	+39.51.31	3	0 267	15.33	ISP	BL Lac	RBL
84 1749+70	17:48:32.8	+70.05.50	3	0.770	14.55	ISP	BL Lac	RBL
PKS 1749+096	17:51:32.7	+09.39.01	17	0.322	12.78	LSP	blazar	RBL
RXS 11756 2+5522	17:56:15.9	+55.22.18	5	0.407	19.90	HSP	BLLac	RBL
S5 1803+78	18:00:45.6	+78.22.10 +78.28.04	5	0.680	14.05	LSP	BL Lac	RBL
3C 371	18:06:50.6	+69.49.28	3	0.046	14.65	ISP	BL Lac	RBL
4C 56 27	18:24:07.0	+56:51:01	3	0.640	12.95	LSP	BL Lac	RBL
4C 380.0	18:29:31 7	+30.51.01 +48.44.46	3	0.695	14.39	LSP	blazar	RBI
1H 1914-194	19:17:44.8	-19:21:30	1	0.137	15.45	ISP	BLLac	RBI
S4 1926+61	19:27:30 4	$\pm 61.17.31$	1	0.157	13.45	ISP	BL Lac	RBI
S5 1946+70	10:45:53 5	+ 70:55:48	1	0 101	13.07	LSI	blazar	PBI
\$5 2007+77	20:05:30.9	+70.55.48 +77.52.43	6	0.342	13.15	LSI	BLLac	RBI
4C + 72.28	20:09:52.3	+72.29.19	2	0.542	13.64	LSP	BL Lac	RBI
PKS 2012-017	20:05:02:5	-01.37.33	6	0 520	14.68	ISP	BL Lac	RBI
S5 2023+76	20:10:10:1	±76:11:26	5	0.520	14.00	ISP	BL Lac	RBI
PKS 2029+121	20:22:55.5	$\pm 12.10.41$	2	1 215	13.01	LSI	BL Lac	RBI
PKS 2022+107	20.31.34.3	+12.19.41	6	0.601	14.25	LSI	ESPO	PBI
1 KS 2052+107 1ES 2027±521	20.30.22.3	+10.30.00	1	0.001	14.25	ISD	rand	
PKS 2037+321	20.39.23.3	+32.19.49	1	0.033	13.48	ISF ISP	cand	RDL PRI
S5 2051 + 74	20.50.00.2	+04.07.49	12	0	19.40		cand.	NDL DDI
$55\ 2051\pm74$	20:31:33.7	+74:41:40 +22:20:20	1	0 250	16.75	ISD	cand.	KDL DDI
DKS 2121 021	21.10.14.0	+33.39.20	1	0.550	14.00		DI Loo	NDL DDI
1 NO 2131-021 MS 21/3 /±070/	21.04:10.2	-01:35:17	14 5	0.337	12.70	LOP		NDL VDI
NIS 2143.4TU/04	21:40:02.3	+0/:19:27	ی 15	0.23/	13.92	LOP		ABL
rnd 2149+17	21:52:24.8	+1/:54:5/	15	0.8/1	15.85	LSP	BL Lac	KBL
rko 2100-304	21:58:52.0	-30:13:32	5	0.116	13.94	151	BL Lac	ABL
BL LAC	22:02:43.2	+42:16:40	19	0.069	13.80	LSP	BL Lac	KBL
KXS J2209.3+1031	22:09:18.5	+10:31:43	6	0	13.36	LSP	cand.	XBL
B2 2214+24B	22:17:00.8	+24:21:46	5	0.505	13.40	LSP	cand.	RBL
J221944+212056	22:19:44.1	+21:20:53	2	0.200	13.84	LSP	BL Lac	RBL

Имя	RA (J2000)	Dec (J2000)	Ν	Z	$\log \nu^s_{peak}$	SED class	AGN class	Тип
PKS 2221-116	22:24:07.9	-11:26:21	2	0.115	13.33	LSP	BL Lac	RBL
PKS 2223-114	22:25:43.7	-11:13:41	5	0.997	14.65	ISP	BL Lac	RBL
3C 446	22:25:45.1	-04:56:34	14	1.404	13.37	LSP	FSRQ	RBL
FIRST J22279+0037	22:27:58.1	+00:37:05	1	0	14.00	LSP	cand.	RBL
RXS J2233.0+1335	22:33:00.9	+13:35:59	5	0.214	16.61	HSP	BL Lac	RBL
PKS 2233-173	22:36:09.5	-17:06:21	1	0.647	13.98	LSP	BL Lac	RBL
PKS 2233-148	22:36:34.0	-14:33:22	2	0.325	13.04	LSP	BL Lac	RBL
B3 2238+410	22:41:07.2	+41:20:11	1	0.726	14.28	LSP	BL Lac	RBL
PKS 2240-260	22:43:26.4	-25:44:30	3	0.774	13.10	LSP	BL Lac	RBL
RGB J2243+203	22:43:54.7	+20:21:03	1	0	14.15	LSP	BL Lac	RBL
B3 2247+381	22:50:05.7	+38:24:37	1	0.119	15.61	ISP	BL Lac	RBL
PKS 2251+006	22:54:04.4	+00:54:20	2	0	12.71	LSP	BL Lac	RBL
PKS 2254+074	22:57:17.3	+07:43:12	7	0.190	14.18	LSP	BL Lac	RBL
RXS J2304.6+3705	23:04:36.6	+37:05:08	7	0	21.01	HSP	BL Lac	XBL
PGC 1465934	23:13:57.3	+14:44:23	1	0.163	14.97	ISP	blazar	RBL
Q J2319+161	23:19:43.4	+16:11:51	2	0	15.48	ISP	BL Lac	RBL
GB6 J2325+3957	23:25:17.8	+39:57:37	1	0	14.11	LSP	BL Lac	RBL
1ES 2326+174	23:29:03.3	+17:43:30	5	0.213	18.07	HSP	BL Lac	RBL
Q J2338+212	23:38:56.4	+21:24:41	5	0.291	17.62	HSP	cand.	RBL
MS 2336.5+0517	23:39:07.0	+05:34:36	2	0.740	14.91	ISP	BL Lac	XBL
B2 2337+26	23:40:29.0	+26:41:56	6	0.372	13.03	LSP	cand.	RBL
1FGL J2341.6+8015	23:40:53.7	+80:15:13	1	0.274	15.40	ISP	cand.	XBL
MS 2342.7-1531	23:45:22.3	-15:15:06	1	0	16.20	ISP	blazar	XBL
MS J23492105+0534	23:49:21.0	+05:34:40	4	0.419	13.75	LSP	BL Lac	RBL
MS 2347.4+1924	23:50:01.7	+19:41:52	4	0.515	15.80	ISP	BL Lac	XBL
RXS J2350.3-059	23:50:17.8	-05:59:27	1	0.515	20.10	HSP	cand.	XBL
PKS 2354-02	23:57:25.1	-01:52:15	7	0.812	13.24	HSP	BL Lac	RBL

Приложение Б

Таблица 11: Плотности потоков (Ян), измеренные на РАТАН-600 в ноябре 2008 г. и в апреле 2009 г., и спектральные индексы (α), измеренные между 2.3 и 7.7 ГГц. Совместный результат автора, опубликован в работе [121]

Имя	$\alpha_{2.3-7.7~GHz}$	$F_{21.7 \ GHz},$	$F_{11.2 \ GHz},$	$F_{7.7 GHz}$,	$F_{4.8 GHz}$,	$F_{2.3 GHz}$,
		Ян	Ян	Ян	Ян	Ян
BZB J0022+0608	-0.10	0.24 ± 0.009	0.38 ± 0.009	0.43 ± 0.011	0.48 ± 0.010	0.44 ± 0.021
BZB J0035+1515	-0.40	0.03 ± 0.007	0.02 ± 0.003	0.02 ± 0.003	0.02 ± 0.002	0.03 ± 0.005
GC0039+23	-0.29	0.36 ± 0.010	0.52 ± 0.021	0.60 ± 0.029	0.80 ± 0.028	0.95 ± 0.061
PKS 0047+023	-0.01	0.14 ± 0.020	0.19 ± 0.007	0.20 ± 0.007	0.23 ± 0.005	0.18 ± 0.009
FBQS J0050-0929	0.27	1.42 ± 0.022	1.32 ± 0.038	1.26 ± 0.027	1.06 ± 0.017	0.78 ± 0.029
PKS 0106+01	0.23	2.45 ± 0.187	2.43 ± 0.063	2.16 ± 0.074	1.83 ± 0.048	1.63 ± 0.088
GC 0109+224	0.24	0.45 ± 0.057	0.61 ± 0.022	0.61 ± 0.029	0.60 ± 0.022	0.43 ± 0.035
BZQ J0136+4751	0.43	4.22 ± 0.145	4.42 ± 0.166	4.63 ± 0.250	4.08 ± 0.178	2.45 ± 0.186
PKS 0139-09	-0.19	0.45 ± 0.016	0.55 ± 0.024	0.60 ± 0.013	0.74 ± 0.012	0.72 ± 0.031
2MASX J01593439+1047052	-1.15	-	0.02 ± 0.003	0.02 ± 0.003	0.04 ± 0.003	0.08 ± 0.010
4C+15.05	-0.61	0.74 ± 0.033	1.09 ± 0.042	1.36 ± 0.061	1.89 ± 0.058	2.85 ± 0.376
2MASS J02171711+0837038	-0.18	0.26 ± 0.011	0.44 ± 0.010	0.55 ± 0.015	0.61 ± 0.013	0.57 ± 0.023
PKS 0215+015	0.33	1.88 ± 0.025	1.90 ± 0.057	1.88 ± 0.057	1.65 ± 0.046	1.00 ± 0.075
B2 0218+35	-0.12	1.32 ± 0.018	1.50 ± 0.120	1.71 ± 0.070	1.59 ± 0.075	1.78 ± 0.103
3C 66A	-0.32	0.69 ± 0.064	0.96 ± 0.034	1.19 ± 0.050	1.27 ± 0.054	1.65 ± 0.133
BZQ J0237+2848	-0.10	1.89 ± 0.038	2.71 ± 0.089	2.86 ± 0.123	3.06 ± 0.108	3.16 ± 0.176
PKS 0235+164	0.32	4.44 ± 0.053	5.38 ± 0.133	5.54 ± 0.164	5.16 ± 0.127	2.90 ± 0.113
2MASX J02503793+1712092	-0.57	0.02 ± 0.008	0.03 ± 0.002	0.03 ± 0.002	0.04 ± 0.002	0.07 ± 0.016
BZB J0303+4716	0.31	0.99 ± 0.057	1.05 ± 0.039	1.17 ± 0.057	0.95 ± 0.059	0.71 ± 0.094
BZB J0316+0904	-0.08	0.07 ± 0.018	0.07 ± 0.005	0.07 ± 0.006	0.08 ± 0.003	0.08 ± 0.012
NGC 1275	0.83	15.63 ± 1.136	20.41 ± 0.732	19.00 ± 0.799	14.46 ± 0.778	17.00 ± 1.864
BZB J0319+1845	-0.83	0.02 ± 0.010	0.03 ± 0.004	0.04 ± 0.005	0.04 ± 0.003	-
1H 0323+022	-0.72	0.02 ± 0.007	0.02 ± 0.003	0.03 ± 0.003	0.05 ± 0.002	0.08 ± 0.014
PKS 0332-403	0.72	2.12 ± 0.041	1.77 ± 0.108	1.46 ± 0.102	0.86 ± 0.059	0.45 ± 0.040
NRAO 140	-0.54	1.48 ± 0.129	1.16 ± 0.045	1.13 ± 0.054	1.54 ± 0.073	2.50 ± 0.195
PKS 0336-017	-0.03	1.86 ± 0.140	2.27 ± 0.108	2.47 ± 0.109	2.63 ± 0.135	2.47 ± 0.232
1H 0413+009	-0.70	0.03 ± 0.005	0.04 ± 0.003	0.05 ± 0.004	0.07 ± 0.002	0.11 ± 0.008
PKS 0420+022	-0.03	0.64 ± 0.044	0.97 ± 0.021	1.16 ± 0.028	1.23 ± 0.023	0.94 ± 0.029
PKS 0420-01	0.54	5.10 ± 0.477	4.75 ± 0.692	4.18 ± 0.607	3.22 ± 0.232	2.09 ± 0.212
PKS 0422+004	0.03	0.60 ± 0.015	0.68 ± 0.014	0.65 ± 0.016	0.66 ± 0.012	0.55 ± 0.024
PKS 0446+11	-0.11	0.72 ± 0.074	0.66 ± 0.053	0.67 ± 0.040	0.80 ± 0.044	0.88 ± 0.141
PKS 0454-234	0.06	2.08 ± 0.022	2.15 ± 0.072	2.23 ± 0.074	2.26 ± 0.087	2.13 ± 0.088
4C-02.19	0.07	1.03 ± 0.085	0.89 ± 0.062	0.90 ± 0.044	0.93 ± 0.025	0.85 ± 0.093
BZQ J0505+0459	-0.84	0.03 ± 0.005	0.06 ± 0.003	0.08 ± 0.005	0.12 ± 0.003	0.19 ± 0.014
2MASS J05075617+6737242	0.12	0.05 ± 0.015	0.04 ± 0.008	0.04 ± 0.010	0.04 ± 0.006	-
BZB J0509+0541	-0.02	0.45 ± 0.020	0.67 ± 0.015	0.69 ± 0.018	0.70 ± 0.015	0.64 ± 0.022
PKS 0507+17	0.38	1.30 ± 0.019	1.17 ± 0.043	0.94 ± 0.045	0.71 ± 0.050	0.48 ± 0.064
PKS 0539-057	-0.02	1.08 ± 0.027	1.18 ± 0.107	1.30 ± 0.061	1.38 ± 0.035	1.22 ± 0.114
OH-10	-0.16	1.49 ± 0.146	_	0.98 ± 0.072	1.11 ± 0.028	1.33 ± 0.136
2MASS J06251826+4440014	-0.02	0.13 ± 0.014	0.21 ± 0.010	0.22 ± 0.013	0.20 ± 0.014	0.18 ± 0.030

Имя	$\alpha_{2.3-7.7 \ GHz}$	$F_{21.7 \ GHz},$	$F_{11.2 \ GHz},$	$F_{7.7 GHz}$,	$F_{4.8 GHz}$,	$F_{2.3 GHz}$,
		Ян	Ян	Ян	Ян	Ян
2MASX J07103005+5908202	-0.88	0.12 ± 0.036	0.08 ± 0.011	0.07 ± 0.006	0.10 ± 0.009	0.19 ± 0.016
PKS 0723-008	0.25	2.26 ± 0.131	2.14 ± 0.062	2.18 ± 0.065	2.34 ± 0.052	1.52 ± 0.084
PKS 0735+17	-0.31	0.49 ± 0.011	0.75 ± 0.019	0.84 ± 0.026	0.96 ± 0.024	1.11 ± 0.045
PKS 0736+01	-0.08	1.32 ± 0.090	1.43 ± 0.045	1.48 ± 0.062	1.59 ± 0.062	1.58 ± 0.260
PKS 0748+126	0.36	3.65 ± 0.112	4.18 ± 0.112	4.13 ± 0.164	3.68 ± 0.206	2.49 ± 0.282
PKS 0754+100	0.02	0.93 ± 0.015	1.02 ± 0.023	1.03 ± 0.027	0.98 ± 0.021	0.92 ± 0.034
PKS 0805-07	0.86	1.54 ± 0.119	0.97 ± 0.143	0.85 ± 0.039	0.39 ± 0.028	0.59 ± 0.076
PKS 0808+019	0.77	1.15 ± 0.018	1.04 ± 0.021	0.83 ± 0.020	0.49 ± 0.009	0.31 ± 0.014
B3 0814+425	0.25	1.32 ± 0.184	1.70 ± 0.049	1.81 ± 0.087	1.52 ± 0.080	1.20 ± 0.135
PKS 0823+033	0.38	1.87 ± 0.028	1.95 ± 0.041	1.74 ± 0.042	1.38 ± 0.026	1.07 ± 0.049
BZQ J0830+2410	0.37	1.09 ± 0.173	1.48 ± 0.062	1.46 ± 0.059	1.29 ± 0.121	0.85 ± 0.163
PKS 0829+046	-0.08	0.55 ± 0.038	0.59 ± 0.021	0.59 ± 0.018	0.59 ± 0.030	0.68 ± 0.199
2EG J0852-1237	0.41	0.83 ± 0.048	0.73 ± 0.034	0.64 ± 0.022	0.45 ± 0.046	0.38 ± 0.074
PKS 0851+202	0.63	3.81 ± 0.165	3.44 ± 0.111	2.65 ± 0.114	1.95 ± 0.073	1.24 ± 0.090
BZQ J0920+4441	0.39	2.20 ± 0.146	1.81 ± 0.058	1.50 ± 0.053	1.08 ± 0.045	0.99 ± 0.052
2MASS J09303759+4950256	-0.71	-	0.06 ± 0.014	0.06 ± 0.009	0.07 ± 0.013	0.16 ± 0.019
OK 290	-0.20	0.62 ± 0.041	0.70 ± 0.027	0.71 ± 0.035	0.83 ± 0.039	0.97 ± 0.133
2MASS J10121335+0630569	-0.49	0.13 ± 0.012	0.20 ± 0.006	0.23 ± 0.008	0.32 ± 0.011	0.44 ± 0.021
SDSS J101603.13+051302.3	0.11	0.68 ± 0.012	0.71 ± 0.020	0.68 ± 0.029	0.69 ± 0.028	0.62 ± 0.068
FBQS J104309.0+240835	0.08	0.41 ± 0.009	0.60 ± 0.017	0.67 ± 0.023	0.74 ± 0.021	0.57 ± 0.025
4C01.28	0.20	4.52 ± 0.147	4.09 ± 0.102	3.57 ± 0.104	3.20 ± 0.084	2.98 ± 0.322
2XMM J110427.3+381231	-0.36	0.29 ± 0.010	0.41 ± 0.013	0.48 ± 0.019	0.53 ± 0.019	0.68 ± 0.034
PKS 1118-05	-0.31	0.33 ± 0.016	0.45 ± 0.022	0.55 ± 0.012	0.75 ± 0.014	0.87 ± 0.033
FBQS J115019.2+241753	0.04	0.56 ± 0.015	0.73 ± 0.020	0.78 ± 0.027	0.82 ± 0.024	0.71 ± 0.031
4C 29.45	0.17	1.92 ± 0.110	2.65 ± 0.084	2.68 ± 0.115	2.71 ± 0.092	2.07 ± 0.178
EXO1218.8+3027	-0.57	0.02 ± 0.005	0.03 ± 0.003	0.04 ± 0.004	0.05 ± 0.002	0.08 ± 0.013
ON 231	0.09	0.33 ± 0.078	0.43 ± 0.025	0.44 ± 0.025	0.49 ± 0.017	0.38 ± 0.067
PKS 1219+04	0.36	1.04 ± 0.105	1.06 ± 0.058	0.82 ± 0.044	0.64 ± 0.013	0.56 ± 0.076
PKS 1222+21	-0.33	0.76 ± 0.120	1.13 ± 0.041	1.18 ± 0.056	1.31 ± 0.067	1.80 ± 0.182
3C 273	-0.27	21.63 ± 1.771	28.48 ± 0.660	32.85 ± 1.606	39.02 ± 1.006	44.79 ± 3.988
FBQS J123014.0+251807	-0.24	0.11 ± 0.008	0.16 ± 0.005	0.18 ± 0.007	0.23 ± 0.007	0.24 ± 0.015
3C 279	0.26	13.66 ± 0.615	12.67 ± 0.447	11.85 ± 0.305	10.84 ± 0.240	8.51 ± 0.341
1WGA J1310.4+3220	0.32	1.79 ± 0.063	1.60 ± 0.054	1.34 ± 0.059	1.11 ± 0.041	0.93 ± 0.173
GB6 J1327+2210	-0.32	0.52 ± 0.070	0.77 ± 0.035	0.91 ± 0.043	1.16 ± 0.041	1.31 ± 0.162
PKS 1335-127	0.50	5.77 ± 0.057	4.97 ± 0.143	4.83 ± 0.280	3.91 ± 0.163	2.12 ± 0.104
FIRST J134105.1+395945	-0.98	-	0.02 ± 0.004	0.02 ± 0.004	0.04 ± 0.004	0.09 ± 0.021
CGRaBS J1357+7643	-0.05	0.55 ± 0.016	0.76 ± 0.031	0.82 ± 0.032	0.87 ± 0.042	0.78 ± 0.061
PKS 1406-076	0.15	0.77 ± 0.074	0.75 ± 0.071	0.78 ± 0.028	0.71 ± 0.018	0.61 ± 0.082
FBQS J142700.4+234800	-0.23	0.18 ± 0.011	0.28 ± 0.008	0.31 ± 0.011	0.37 ± 0.011	0.38 ± 0.021
2MASS J14424821+1200402	-0.49	0.02 ± 0.006	0.03 ± 0.002	0.03 ± 0.002	0.04 ± 0.002	0.06 ± 0.010
PKS 1502+106	0.48	3.32 ± 0.103	2.79 ± 0.081	2.29 ± 0.079	1.65 ± 0.046	1.29 ± 0.092
PKS 1502+036	-0.01	0.53 ± 0.018	0.60 ± 0.032	0.62 ± 0.028	0.63 ± 0.031	0.57 ± 0.023
PKS 1510-08	0.14	2.48 ± 0.204	2.16 ± 0.244	1.80 ± 0.069	1.83 ± 0.047	1.84 ± 0.284
PKS 1514+197	0.75	1.22 ± 0.017	1.18 ± 0.031	0.99 ± 0.031	0.74 ± 0.019	0.37 ± 0.018
1RXS J152239.7-273025	0.10	0.65 ± 0.022	0.85 ± 0.030	0.99 ± 0.062	1.12 ± 0.066	0.94 ± 0.133
4C +05.64	-0.06	2.59 ± 0.094	3.00 ± 0.072	3.20 ± 0.100	3.54 ± 0.096	3.34 ± 0.186
BZB J1555+1111	-0.34	0.12 ± 0.010	0.16 ± 0.005	0.18 ± 0.007	0.19 ± 0.005	0.26 ± 0.016
SDSS J160706.23+155136.8	-0.27	0.29 ± 0.012	0.38 ± 0.010	0.39 ± 0.012	0.44 ± 0.011	0.52 ± 0.022
4C +10.45	-0.25	0.98 ± 0.037	1.25 ± 0.043	1.32 ± 0.052	1.45 ± 0.042	1.81 ± 0.154
BZQ J1613+3412	-0.25	1.90 ± 0.095	3.12 ± 0.112	3.45 ± 0.154	3.84 ± 0.146	4.58 ± 0.685
4C +38.41	0.12	2.29 ± 0.117	2.90 ± 0.091	2.95 ± 0.124	2.94 ± 0.115	2.47 ± 0.144
3U 345	0.38	6.71 ± 0.245	7.25 ± 0.234	6.54 ± 0.273	5.90 ± 0.241	6.99 ± 0.652
MRK 0501	0.07	0.94 ± 0.042	1.31 ± 0.040	1.43 ± 0.059	1.46 ± 0.057	1.49 ± 0.102
PKS 1717+177	0.00	0.43 ± 0.015	0.58 ± 0.015	0.62 ± 0.020	0.60 ± 0.016	0.55 ± 0.025
2MASS J17250434+1152155	-0.55	0.04 ± 0.008	0.05 ± 0.004	0.05 ± 0.005	0.06 ± 0.003	0.10 ± 0.012
NRAO 530	0.12	4.57 ± 0.165	4.76 ± 0.104	4.45 ± 0.125	4.03 ± 0.078	3.85 ± 0.179
IES 1741+196	-0.64	0.10 ± 0.005	0.14 ± 0.005	0.17 ± 0.007	0.21 ± 0.006	0.38 ± 0.019

Имя	$\alpha_{2.3-7.7~GHz}$	$F_{21.7 GHz}$,	$F_{11.2 GHz}$,	$F_{7.7 GHz}$,	$F_{4.8 GHz}$,	$F_{2.3 GHz}$,
		Ян	Ян	Ян	Ян	Ян
OT 081	0.59	5.58 ± 0.065	5.35 ± 0.120	4.42 ± 0.116	3.16 ± 0.068	1.60 ± 0.063
BZB J1756+5522	-0.95	-	0.06 ± 0.009	0.05 ± 0.008	0.06 ± 0.008	0.22 ± 0.040
BZB J1800+7828	0.18	3.32 ± 0.038	2.85 ± 0.102	2.79 ± 0.090	2.71 ± 0.112	1.97 ± 0.107
3C 380.0	-0.63	2.97 ± 0.115	3.44 ± 0.094	4.04 ± 0.130	5.32 ± 0.210	9.03 ± 0.643
BZQ J1852+4855	-0.15	0.25 ± 0.107	0.22 ± 0.033	0.21 ± 0.031	0.23 ± 0.014	0.27 ± 0.022
PKS 1954-388	-0.10	1.20 ± 0.025	1.92 ± 0.089	2.19 ± 0.085	2.37 ± 0.103	2.14 ± 0.115
BZB J2005+7752	0.11	0.88 ± 0.018	0.89 ± 0.043	0.89 ± 0.030	0.86 ± 0.037	0.78 ± 0.046
PKS 2012-017	-0.32	0.30 ± 0.012	0.44 ± 0.010	0.48 ± 0.012	0.58 ± 0.011	0.68 ± 0.022
BZQ J2035+1056	-0.34	0.32 ± 0.016	0.38 ± 0.010	0.42 ± 0.013	0.57 ± 0.013	0.69 ± 0.026
PKS 2047+039	-0.17	0.42 ± 0.008	0.64 ± 0.014	0.69 ± 0.017	0.73 ± 0.015	0.77 ± 0.026
PKS 2131-021	-0.08	1.91 ± 0.021	2.22 ± 0.043	2.29 ± 0.051	2.51 ± 0.043	2.39 ± 0.070
BZQ J2143+1743	0.29	0.74 ± 0.080	1.02 ± 0.035	1.04 ± 0.052	0.96 ± 0.030	0.67 ± 0.093
4C 06.69	0.30	4.52 ± 0.567	5.52 ± 0.178	5.72 ± 0.169	5.59 ± 0.154	3.65 ± 0.181
PKS 2149+173	-0.28	0.35 ± 0.016	0.54 ± 0.015	0.60 ± 0.019	0.68 ± 0.018	0.77 ± 0.036
BL Lac	0.28	2.88 ± 0.330	3.72 ± 0.314	3.85 ± 0.242	3.06 ± 0.140	2.46 ± 0.149
PKS 2201+171	0.44	0.62 ± 0.031	0.80 ± 0.026	0.73 ± 0.042	0.68 ± 0.041	0.87 ± 0.067
PKS 2209+236	0.03	0.68 ± 0.016	0.91 ± 0.034	0.98 ± 0.042	1.07 ± 0.053	0.79 ± 0.095
3C 446	0.18	6.59 ± 0.351	7.87 ± 0.395	7.53 ± 0.228	6.85 ± 0.159	5.89 ± 0.196
BZQ J2229-0832	0.35	2.31 ± 0.168	2.41 ± 0.175	2.42 ± 0.085	2.40 ± 0.059	1.48 ± 0.135
4C -11.69	-0.12	4.10 ± 0.402	4.25 ± 0.275	4.27 ± 0.152	4.58 ± 0.156	5.32 ± 0.296
3C 454.3	-0.03	14.11 ± 0.159	11.79 ± 0.893	10.79 ± 0.350	10.18 ± 0.476	12.44 ± 0.546
PKS 2254-204	0.19	1.08 ± 0.030	1.00 ± 0.025	1.06 ± 0.042	1.04 ± 0.091	0.75 ± 0.090
PKS 2255-282	0.67	3.58 ± 0.037	2.80 ± 0.096	2.75 ± 0.108	2.21 ± 0.143	1.09 ± 0.052
BZB J2304+3705	-0.71	0.02 ± 0.003	0.02 ± 0.002	0.01 ± 0.002	0.02 ± 0.001	0.04 ± 0.005
PKS 2320-035	0.07	0.92 ± 0.051	1.01 ± 0.057	1.04 ± 0.038	1.05 ± 0.032	0.93 ± 0.061
2MASS J23385638+2124410	-0.73	0.02 ± 0.004	0.02 ± 0.002	0.02 ± 0.002	0.04 ± 0.002	0.06 ± 0.012

Рис. 7: Отношение широкодиапазонного гамма-излучения и плотности потока на 21.7 ГГц. BL Lac показаны кружками, FSRQ — треугольниками, кандидаты в BL Lac (BL Lac candidates) — пустыми квадратами, блазары неопределенного типа (Blazars of uncertain type) — заполненными квадратами. Совместный результат автора, опубликован в работе [121]

Рис. 8: Отношение широкодиапазонного гамма-излучения и плотности потока на 11.2 ГГц. Обозначения те же, что на Рисунке 7. Совместный результат автора, опубликован в работе [121]

Рис. 9: Отношение широкодиапазонного гамма-излучения и плотности потока на 7.7 ГГц. Обозначения те же, что на Рисунке 7. Совместный результат автора, опубликован в работе [121]

Рис. 10: Отношение широкодиапазонного гамма-излучения и плотности потока на 4.8 ГГц. Обозначения те же, что на Рисунке 7. Совместный результат автора, опубликован в работе [121]

Рис. 11: Отношение широкодиапазонного гамма-излучения и плотности потока на 2.3 ГГц. Обозначения те же, что на Рисунке 7. Совместный результат автора, опубликован в работе [121]