A Catalog of Averaged Magnetic Phase Curves. Version 2.1

V. D. Bychkov¹, L. V. Bychkova¹, and J. Madey²

¹ Special Astrophysical Observatory, Russian Academy of Sciences, Nizhny Arkhyz,

Russia,

vbych@sao.ru,

² Warsaw University Observatory, Warsaw, Poland

Abstract. In the latest version, the catalog contains magnetic phase curves for 356 stars of various types.

Keywords: stars: magnetic fields DOI:10.26119/978-5-6045062-0-2_2020_312

The study of stellar magnetic fields is one of the most important directions in modern astrophysics. As techniques and techniques improve measurements of magnetic fields of stars, as well as commissioning of a number of large optical instruments significantly increased accuracy of magnetic field measurements stars. The magnetic fields of stars are periodically variable in time, according to this, magnetic phase curves (MPC) must be obtained for their description. To describe the observed variability of the magnetic fields of stars a catalog of average phase curves was created Bychkov et al. (2005, 2020). The main goals of creating a catalog are:

- 1. Review and synthesis of accumulated observation material on periodic magnetic behavior of stars of different types.
- 2. The collected measurements will allow statistical analysis of magnetic fields of stars.
- 3. Information is presented in a convenient form for verification of various kinds theoretical models.
- 4. The catalog will be useful for developing observation programs.
- 5. There is another important direction that develops the creation of this catalog - studies of orientation of axes of rotation stars in space.
- 6. Allows efficient investigation of mechanisms of generation and evolution of magnetic fields of stars.
- 7. Allows you to obtain estimates of the energy of the magnetic fields of stars.

A Catalog of Averaged Magnetic Phase Curves

- 8. Investigate interactions of magnetic fields of stars with interstellar medium.
- 9. Investigate the mechanism of "magnetic braking" of rotation of stars.
- 10. Study of global magnetic field generation as a superposition of local magnetic fields in late stars.
- 11. Determination of rotation period of magnetic stars.
- 12. Study of the orientation of planetary orbits in stars with planets and planetary systems.

Usually, MPCs are described by a simple or double sinusoid inscribed least squares method. It should be noted that at the moment, relatively good statistics exist only for Ap/Bp stars — 221 objects. MPCs was published in Bychkov et al. (2020).

Ap/Bp	221	Stars hosting planets	8
Var. β Cep type	14	Normal chem.comp.stars	5
Slowly Pulsating B stars	6	Be stars	6
High Proper Motion stars	7	Var. δ Sct type	1
Var. δ Cep type	1	Semi-regular var.pulsating	2
Multiple star	13	Flare stars	14
Pulsating star	2	Ae/Be Herbig stars	9
Var.BY Dra	7	T Tau stars	3
Var.Ori type	2	Pre-main sequence	2
Rotationally var.star	8	EB Algol type	1

Table 1. Number of stars with MPC depending on type

Bibliography

Bychkov, V. D., Bychkova, L. V., & Madej, J. 2005, A&A, 430, 1143
Bychkov, V. D., Bychkova, L. V., & Madej, J. 2020, arXiv e-prints, arXiv:2004.14099

Table 2. Estimates of maximum values of half-amplitudes B_1 and B_2 depending on from the type of stars. N1 — number of stars with simple sinusoid, N2 — number of stars with double sinusoid

Type of star	N1	B_1max	N2	B_1max	B_2max
		in G		in G	in G
Ap/Bp	166	3000	62	5000	1200
$Var.\beta$ Cep type	14	500			
Slowly Pulsating B stars	6	350			
High Proper Motion stars	2	10	5	200	50
Var. δ Cep type	1	80			
Multiple star	11	1050	3	5000	750
Pulsating star	2	650			
Var.BY Dra	3	10	4	35	15
Var.Ori type	2	870			
Rotationally var.star	5	2900	3	3500	350
Stars hosting planets	7	10	1	3	2
Normal chem.comp.stars	4	1350	1	50	40
Be stars	5	750	1	650	170
Var. δ Sct type	1	3000			
Semi-regular var.pulsating	2	10			
Flare stars	10	400	5	700	150
Ae/Be Herbig stars	7	450	1	650	170
T Tau stars	3	330	1	300	80
Pre-main sequence	1	150	1	20	10
EB Algol type			1	35	10
In Cluster	5	850	2	3300	1000